Universidad (OO

ucodm | Carloslll
de Madrid

OCW: Data structures and algorithms. Author: I.

Segura-Bedmar.

Problem 1 (1 points) — Suppose that BSTree is a class that implements a binary search tree
whose elements are integers. Write a method that returns a doubly linked list containing the
elements of the tree’s nodes that are not leaves. The list should be sorted in descending
order.

Some help:
e [t is not allowed to use any sorting algorithm to sort the list.
e [t is not allowed to use the Python List class. You must use the Doubly Linked List
class studied during the course. You must also implement those methods of this
class that you use in your solution.

For example:

The output will be the doubly linked list containing the following elements: 71,69,37

Solution:

def getNonLeaves (self):
if self.root is None:
return None

lst=DoublyLinkedList ()
self. getNonLeaves (self.root,lst)
return Ist

def getNonLeaves (self,node,lst):
if node:
self. getNonLeaves (node.rightChild,1st)
if node.leftChild!=None or node.rightChild!=None:
lst.addLast (node.elem)
self. getNonlLeaves (node.leftChild,1st)

def addLast (self,e):
"""Add a new element, e, at the end of the list"""
#create the new node
newNode=DoublyNode (e)

if self.isEmpty():
self.head=newNode

else:
newNode.prev=self.tail
self.tail.next=newNode

#update the reference of head to point the new node
self.tail=newNode

#increase the size of the 1list
self.size=self.size+l

Problem 2 (1 points) — In the BSTree class, write a method that returns the kth smallest
element of the binary tree. What is the time complexity of the method?.

For example:

The Ist smallest element is 37
The 2nd smallest element is 54
The 3th smallest element is 69
The 4th smallest element is 71
The 5th smallest element is 76

Solution:

def getSortedList (self):
if self.root is None:
return None

lst=DoublyLinkedList ()
self. getSortedList (self.root,lst)
return 1lst

def getSortedList (self,node,lst):
if node:
self. getSortedList (node.leftChild,lst)
1lst.addLast (node.elem)
self. getSortedList (node.rightChild,lst)

def smallestK(self,k):
if k<=0 or k>self.size():
print(k, ' does not exist')
return None
lst=self.getSortedList ()
return lst.getAt (k-1)

Problem 3 (1 point):
A) (0.5) Draw its height-balanced tree.
B) (0.5) Draw its size-balanced tree.

Solution:

a) The tree only has an unbalanced node, which is 23. You should apply a Right
Left rotation on it:

b) The tree has two unbalanced nodes in size: 15 and 23. We must start with the root,
15. Therefore, you should insert it on the right subtree and replace it with the maximum
element from the left subtree (7).

As resulted of balancing the root, the node with key 23 was also balanced. However, the
node with key 6 becomes an unbalanced node. We must move it to its right subtree.

Problem 4 (2 points). Given the following class that implements a social network for
UC3M students:

class FriendsUC3M:
def _ init_ (self):
self.users = {}

def addUser (self,email):
if email in self.users:
print (email, 'already exists!!!")
return
self.users[email] = []

def getFriends (self,email):
if email not in self.users:
print (email, 'does not exist!!!")
return
return self.users[email]

def areFriends (self,emaill,email?2):

if emaill not in self.users:
return False

if email2 not in self.users:
return False

if email2 in self.users[emaill]:
return True

if emaill in self.users[email2]:
return True

return False

def addFriends (self,emaill,email2):

if emaill not in self.users:
self.addUser (emaill)

if email2 not in self.users:
self.addUser (email2)

if not self.areFriends(emaill,email2) :
self.users[emaill] .append(email2)
self.users[email2] .append(emaill)

Write a method, friendsAtdistance, which takes a user (an email) and a number, k, and
returns a Python lists containing those users with a distance ‘k’ from the input user.

For example, given the social network:

pmf:['isa’, 'lourdes’]
isa:['pmf']

lourdes:['pmf, 'ana’]
ana:['lourdes’, 'ines’, 'mateo’]

ines:['ana']
mateo:['ana']

[friendsAtdistance(‘pmf’, 1) returns ['isa’, 'lourdes’]
[friendsAtdistance(‘pmf’,2) returns ['ana']
friendsAtdistance(‘pmf’,3) returns [ines, 'mateo’]

It is allowed to use data structures such as Python dictionary or Python List to
implement your final solution.

Solution:

def friendsAtdistance (self,email, k) :
if k<I1:
print(k, 'should be greater than 1!!!")
return None
if email not in self.users:
print(email, ' no exists')
return None

visited=/[]

return self. friendsAtdistance ([email],1,k,visited)

def friendsAtdistance(self,friends,level, k,visited):

if level>k: #base case
print('over',level, k)
return []

result=[]

for user in friends:
visited.append (user)
for x in self.getFriends (user) :
if x not in visited:
result.append (x)

if level==k:
return result

if level<k:
return self. friendsAtdistance (result,level+1,k,visited)

Problem 5 (1 point). Implement a method based on divide and conquer strategy that
takes a sorted Python List of numbers, A, and a number, x. The method must return the
index of x in the list. If x is not found, the method returns -1.

Solution:

def binarySearch(arr,x):
if arr is None:
return -1

return binarySearch(arr,0,len(arr)-1,x)

Returns index of x in arr if present, else -1
def binarySearch(arr, 1, r, x):

Check base case
if r >= 1:
mid = (l+r)//2
If element is present at the middle itself
if arr[mid] == x:
return mid

If element is smaller than mid, then it can only
be present in left subarray
elif arr[mid] > x:
return binarySearch(arr, 1, mid-1, x)
Else the element can only be present in right subarray
else:
return binarySearch(arr, mid+l, r, x)
else:
Element is not present in the array
return -1

