Universidad (OO

ucodm | Carloslll
de Madrid

OCW: Data structures and algorithms. Author: I.

Segura-Bedmar.

Problem 1 (1 points) — Suppose that BSTree is a class that implements a binary search tree
whose elements are integers. Write a method that returns a doubly linked list containing the
elements of the tree’s nodes that are not leaves. The list should be sorted in descending
order.

Some help:
e [t is not allowed to use any sorting algorithm to sort the list.
e [t is not allowed to use the Python List class. You must use the Doubly Linked List
class studied during the course. You must also implement those methods of this
class that you use in your solution.

For example:

The output will be the doubly linked list containing the following elements: 71,69,37

Problem 2 (1 points) — In the BSTree class, write a method that returns the kth smallest
element of the binary tree. What is the time complexity of the method?.
For example:

The Ist smallest element is 37
The 2nd smallest element is 54
The 3th smallest element is 69
The 4th smallest element is 71
The 5th smallest element is 76

Problem 3 (1 point):
A) (0.5) Draw its height-balanced tree.
B) (0.5) Draw its size-balanced tree.

Problem 4 (2 points). Given the following class that implements a social network for
UC3M students:

class FriendsUC3M:
def init (self):
self.users = {}

def addUser (self,email):
if email in self.users:
print (email, 'already exists!!!")
return
self.users[email] = []

def getFriends(self,email):
if email not in self.users:
print (email, 'does not exist!!!")
return
return self.users[email]

def areFriends (self,emaill,email2):

if emaill not in self.users:
return False

if email2 not in self.users:
return False

if email2 in self.users[emaill]:
return True

if emaill in self.users[email2]:
return True

return False

def addFriends (self,emaill,email2):

if emaill not in self.users:
self.addUser (emaill)

if email2 not in self.users:
self.addUser (email?2)

if not self.areFriends(emaill,email?2):
self.users[emaill].append(email?2)
self.users[email2] .append(emaill)

Write a method, friendsAtdistance, which takes a user (an email) and a number, k, and
returns a Python lists containing those users with a distance ‘k’ from the input user.

For example, given the social network:

pmf:['isa’, 'lourdes’]
isa:['pmf’]

lourdes:['pmf, 'ana’]
ana:['lourdes’, 'ines’, 'mateo’]
ines:['ana’]

mateo:['ana’]

friendsAtdistance(‘pmf’, 1) returns ['isa’, 'lourdes’]
JriendsAtdistance(‘pmf’,2) returns ['ana']
[friendsAtdistance(‘pmf’,3) returns [ines, 'mateo’]

It is allowed to use data structures such as Python dictionary or Python List to
implement your final solution.

Problem S (1 point). Implement a method based on divide and conquer strategy that
takes a sorted Python List of numbers, A, and a number, x. The method must return the
index of x in the list. If x is not found, the method returns -1.

