ucdm | Universidad Carlos lll de Madrid

000

OPENCOURSEWARE
ADVANCED PROGRAMMING
STATISTICS FOR DATA SCIENCE
Ricardo Aler

The Python Programming
Language

What is Python?

General-purpose, high-level programming language
Code Is very readable

Includes different ways of programming:

— Object-oriented

— Imperative
— Functional programming

Python 2.x (2.7) vs. Python 3.x (3.7)

Languages for data analysis poll

KDnuggets Analytics, Data
Science, Machine Learning Software
Poll, 2016-2018

0% 10% 20% 30% 40% 50% 60% 70%

| | | | | | |

Python 65.6%

RapidMiner
R

SQL
W 2018/ %share

33.4% m 2017|%share

Excel
Anaconda
Tensorflow 29.9% M 2016 %share

Tableau
scikit-learn
Keras

Apache Spark

Why Python?

« Many scientific and machine learning packages:
NumPy (numeric matrices), SciPy, Pandas
(dataframes), Statsmodels (statistics), scikit-learn
(machine learning)

 Nice Interface for Spark (pyspark)
— R’s interface 1s not so well developed yet (sparkR,
sparklyr)
« Commonly used in Deep Learning (TensorFlow,
Keras, Pytorch, ...)

Python versions

* Python 2.x (2.7):
— Old version, but many packages still use it
— It’s not going to be updated
« Python 3.x (3.7): new version
— But only a few differences with 2.x
— This course we will use 3.7

ANACONDA

* Free Python distribution. It includes over 300 of the most
popular Python packages for science, math, engineering,
data analysis.

Install from: https://www.anaconda.com/download/
Remember to select Python 3.7!!

) Anaconda Navigator

Eile Help

fr

. Environments

.
W Learning

Community

Documentation

Developer Blog

Feedback

Anaconda ecosystem

Python editor

) ANACONDA NAVIGATOR

Notebooks

]

Jjupyterlab

A

An extensible environment For interactive

and reproducible computing, based on the
Jupyter Notebook and Architecture

orange3

3.150
Component based data mining Framework
Data visualization and data analysis for
novice and expert. Interactive workflows
with a large toolbox

Voo

Jupyter
-
notebook
A
Web-based, interactive computing
notebock environment. Edit and run
human-readable decs while describing the
data analysis.

rstudio
1.1.456
A set of integrated tools designed to help
you be more productive with R. Includes R
essentials and notebooks.

IPTy

qtconsole
431
PyQt GUI that supports inline figures,
proper multiline editing with syntax
highlighting, graphical calltips, and more.

-

Scientific P¥thon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and intrespection features

X

vscode
1211
streamlined cede editer with suppert For
development operations like debugging,
task running and version control.

glueviz

0133
Multidimensional data visualizatien across
files. Explore relationships within and
among related datasets

Interactive vs. Scripts

eInteractive: typing Python commands in
the console (or the notebook) and
obtaining an answer

*Script:

—A program is created using a text editor (for

Instance, with spyder)

—Or using the Jupyter notebook

>>> 'hello world!"

'hello world!"

Aplicacién de escritorio

mmmmmmmmm

« A new tab will open in your default browser
« Now, you have to go to your directory

- k{“ibid“'“ |~ Texaspro.. Aproposlogi. | #Zap.. @) Home){ m\ T e X
localhost: 2885 tree = Buscar ﬁ E (] = - 3 P e =

— Jjupyter

Files Funning Clusters

T

To import a notebook, drag the file onto the listing below or click here. Mew - | ¥

m

O

- | W

[0 Anaconda3

[AnalisisDatos

O AppData

[0 BACKUPS

[0 Contacts

(3O Desktop

O Documents

O Downloads

[0 Dropbox

[0 EXPERIMENTOS

(3 Facturas iberdrola

| OO0 0 000 0OocOoOOoaOo

 Dropbox/tmp/my_directory/

@ | localhost:3389/tree/Dropbox/tmp/m 7 | @ || Q Buscar ﬁ' | B = | - ¥ | - ¥ » —

©

= jupyter

Files Running Clusters
To import a notebook, drag the file onto the listing below or click here. Neww || &
@ Dropbox [tmp [my_directolD
I

Motebook list empty.

 Start a Python 2 notebook

- p[=ly
-IBHS... | ﬁmrk—... ol Texas pro... | Apropos Logi... | " Elpac. o) -
| (-) @ localhost:8889//tree/Dropbox/tmp/m + | C Q, Buscar ﬁ E H - +# - ¥ » =
-
~jupyter
Files Running Clusters
Select items to perform actions on them. Upload =
I
~ #& [Dropbox | tmp / my_directory Text File
Folder
[

Terminals Unavailable
MNotebook list empty.

Motebooks

lecalhost:8889/tree/ Dropbox/tmp/my_directory®

* You can type python commands in the cell

— Untitled

—Jupyter untitled s

File Edit View Insert Cell Kermel & |F'5,fth|:|n 20

IEI Cell Toolbar: | Mone IZI

B + = a0 4+ 4+ W N

‘ In[]:| /

* Important:

— “Enter” changes to a new line WITHIN the cell
— In order to execute the commands in the cell, you have to type shift+enter
— Once you type shift+enter, a new cell is created. You can type new commands

| X4 Fpark-m | =/ Texas pro... | Apropos Logi... | | Elpac. d3 /' Dropbox.r’...j — Untitled » 1\- >+ -

localhost:8889/ notebocks/Drophox’ {3’ E 2 3 - B - ¥ » =
— J u pytEr Unt|t|ed {autosaved) ﬂ
File Edit View Insert Cell Help rd | Python 2 O

+ = B A v M C || code E| Cell Toolbar: Mone E|

 You can return to a previous cell and change it. You

need to re-execute It Wi

. dh Dropboﬂ...j."f _

shift+enter (or ctrl+enter)

Untitled x L0+ =
b

< 'spark-... -/ Texas pro... | Apropos Logi... q E
localhost:3889/ notebooks/Droplbox” Buscar

Jupyter UntltIEd {unsaved £hanges)
File Edit View Insert Ce Kernel Help

+ = BB 4+ B C Code

In [3]: | ¥ = 3+40000
¥

Cut[3]: 40003

In [4]: |y + 100

Cut[4]: 107

In [1:

wBa OH- =~ 4+ »

|Z| Cell Toolbar: Mone E|

* |f you want the changes to propagate to the
following cells, you have to execute all of
them again.

< 'Naspro... | Apropos Logi... | 7 Elpac.. o3 | — Dropbmﬁ’...}jﬁ — Yntitled x“"-hé‘ Running ... > + =
localhost:8889/ notebooks/Droplbox” c L4, Buscar ﬁ g 2 =EH - =B - ¥ » =
— Jupyter UntltIEd [autosaved) = ﬂ |
File Edit View Inset Cell Kemel Hefp (' localhost:8559 notebooks/Dropbox”
+ 3 @ B 4+ ¥ Run [=] Cell Toolbal| JUther Untitled nsave
Fun and Select Bejow
Run and Insert Befow File Edit WView Insert Cell
I 3]: = 3+40000 Fun All
n [51: |y B+ = & B 4+ ¥ WA
o Run All Above
Cut[3]: 40003 Run All Below
In [4]: |y + 100 Cell Type ’ In [6]: |y = 3+40000
cut[4]: 107 l ¥
Current Cutput L o
Qut[6]: 40003
In []1: All Output »

In [7]% | v + 100

out[7]: 40103

In []:

localhostBE89 notebooks/Dropbox/tmp/my_directory/Untitled.ipynb?kernel_name=python2#

b

 |n a Python notebook, you can mix text, python

commands and results, by changing the cell type
/ B

4 'msprﬂ-... | Apropos Logi... | 7 Elpac.. o) | - Dmpbﬂ'ﬂ...j/ " Untitled X\-ﬁhﬁ Running ... > +

L] localhost:8289 notebooks/Dropbox” c Q, Buscar ﬁ E 2 H - - 3 » =
-._.- Ju pyter Unt'tIEd (autosaved) F
File Edit WView Insert Cell Kernel Help | Python 2 O
+ = R 4+ Run EI Cell Toolbar: Mone IEI

Run and Select Below

Run and Insert Below

In [6]: y = 3+40000 Run Al
¥ Run All Above
Cut[6]: 40003 Run All Below
In [7]: y + 100 Cell Type ’ Code
Cut[7]: 40103 Markdown

Current Output Raw MBCaonvert

In []: All Qutput ¢

localhostEE29/ notebooks/Dropbox'trmp/my_directony/Untitled.ipynb?kernel_narme=python#

e Text mixed with code

['t"as pro... | Apropos Logi... | < Elpac. #d | _ Dropbox/...

€ | @ | localhost:8889/ notebooks/Dropbox/ ¢ || Q Buscar w B H - B -
— J u pyter Unt|t|Ed {unsaved changes)
File Edit View Insert Cell Kermel Help
+ 32 A B 4+ ¥ M B C Code EI Cell Toolbar: Mone EI
out[6]: 40003

In [7]: |y + 100

Cut[T]: 40103

@m o compute e This is text (markdown)

| Python 2 O

In [9]: import math

T s This Is code

Cut[9]: 6.2B3185307179586

In [1:

m

.1

Markdown

« Markdown Is a language to format text:
— *this goes in italics*
— **this goes in boldface**
— #This 1s a header
— ##This 1s a subheader

— | can even write equations (in LaTeX):
o S\sgrt{\frac{x}{x+y}}$

- Markdown

T Untitled
';(_:I' & | localhost:2339/ notebooks/Dropboxs 7 | & | | Q, Buscar | 'ﬂ' B H - = - 4 » —
s .
oy J u pyter Unt|t|Ed {unsaved changes) P

File Edit Wiew Insert Cell Kermnel Help

+ 3 @ B 4 ¥ M E C Coe (=] celiToolbar: none v

-t -t v
-

In [9]: import math

2 * math.pi

Cut[9]: &.28B31853071748586

This goes in italics

This goes in boldface

#This is a header

#This is a subheader

| can even write equations |\sqrt{\frac{x}{x+y}}|

In [1:

You can even embed plots

NE
L’(prﬂ][f /' Untitled % | = Running ... | = Howtow.. | = python - ... | [T] sin, sing, ...
= | @ | localhost:3839/notebooks/Dropbox/” - Q, Buscar ﬁ B H - = - 3 » =
: JUp)ftEl’ Untitled jwmeed snznges A
File Edit WView Insert Cell Kermel Help |Fy'l:r'cr' 2 0
2+ = A B 4+ W B C Code [#] cell Toolbar: none (=]

| can even write eguations ‘qut{'.fran{x]{x-Py}}l -

In [4]: %matplotlik inline
import matplotlib

import numpy as np
i import matplotlib_pyplot as plt

#x = np.arangei{-Z*np.pi, Z*np.pi, 0.01)
¥ = np.3sin{x)

plt._ploti(x, ¥)

plt.show

1a

05 /
00
05|
= = 2 0

m

Saving the notebook

" Untitled *

"

I:E‘:I@ localhost:3889/notebooks/Dropboxs v | & ||0\ Buscar | W B8 H - = - & » =

: J u pyter Untitled {unsaved changes)

File Edit Wiew Insert Cell Kermnel Help

[Mew Motebook ¢ -+ + MW B C Code IEI Cell Toolbar: Mone
Open._. Fr ' '
Make a Copy... |mth
Hengme L.pi

Save and Chechkpoint ,_ 07179586

Revert to Checkpoint »

in italics
Print Preview & in boldface
Download as header
Trusted Motebook a subheader
Close and Halt) write equations [\sqrt{frac{x]{x+y} |
Pe—
In [1:

lzcalhostEE89/ notebooks/Dropbox/tmp/my_directory/Untitled.ipynb?kernel_name=python2#

Download the notebook

 |In several formats: (filename can be changed in File/Rename)
— Python notebook: it can be loaded again as a notebook

— Python script: this is a text file containing the sequence of Python commands.
Text is also stored as comments (#)

— html: it can be loaded later in a browser
— pdf (it might not work because it requires LaTeX)

. ropbox/... | ntitle: | = Running ... ~ Howtow.. | 5 mathjax... > + -
ehoo rophbox & ﬁ E u u = El - ; » E

Jupyter untitled womes A
File Edit View Insert Cell Kernel Help | Python 2 O
MNew Motebook P v M B C) Code IZ| Cell Toolbar: Maone IZ|
Open... r— ' '
Make a Copy. gt
Rename... pi

Save and Checkpoint 397170586

Revert to Checkpoint *

in italics

Print Preview 5 in boldface

Download as » IPython Motebook (.ipynb)
Python (_py)

Trusted Motebook HTML (htm)

Close and Halt Markdown (.md))
reST (.rst)

In [1: PDF via LaTeX (_pdf)

localhost:8889,/ notebooks/Dropbox/trmp/my_directory/Untitled.ipynbfkernel_name= python2#

Etc.

e In order to finish the notebook:
— File / close and finish

 Jupyter notebooks have more options but
you can explore them yourselves

The Python Programming
Language:
Data Types

The Python Interpreter

*Python is an interpreted language

*The interpreter provides an
Interactive environment to play
with the language

*Results of expressions are printed
on the screen

>>> 3+ 7

10

>>>3< 15

True

>>> "print me'

'print me'

>>> print('print me*)
print me

>>>

Help and comments
help(“print™)

This 1S a comment

print('Hello world")

Importing Modules

Python modules are equivalent to R libraries

Sometimes, some functions are not directly
available in Python

They are included in modules

Modules have to be imported in order to use Its
functions

Example: ‘“+’ is included 1n base Python, but square
root (sqrt). sqrt is included in module math

Importing Modules

If we try to use sqrt, we get an error:

In [1]: sqrt(2)

NameError Traceback (most recent call last)
<ipython-input-1-40e415486bd6> in <module>()

----> 1 sqgrt(2)

NameError: name 'sgrt' is not defined

Importing Modules

« Let’s import module math, and use the sqrt function within
this module, by means of the dot (.) notation
» Modules are similar to R libraries

In [2]: import math

In [3]: math.sqrt(2)
Out[3]: 1.4142135623730951

Importing Modules

« Sometimes, it is useful to import a function from a library,
rather tan the whole library.

In that case, it is enough to use the name of the function
 SeVveral functions can be imported at the same time

[2]: from math impoﬁqrf, floor

In [3]: sqrt(2)
Out[3]: 1.4142135623730951

Importing Modules

« Modules can be given aliases (shorter names for the module)

In [2]: import numpy as np
In [3]: np.sqrt(2)

The print Statement

It can be used to printresultsand In [6]: print("Hello"
variables Hello
*Elements separated by commas
print with a space between them
In [7]: print("Hello’, "There')
Hello There

Example

» Modules contain functions, but also constants, like pi

« Import module math, assign 2*pi to variable my pi, and
print the result

Import math
my_pi = math.pi

print(my_pi)
3.141592653589793

Variables

« The variable Is created the first time you assign it a value
 Everything in Python Is an object

>>> X =12
>>>y =" lumberjack "
>>> X
12
>>>y
> lumberjack ’
« Multiple assignments (in parallel): n[8]-a=3
" In[9]:b=14
In [10]: a, b = a+b, a-b
In[11]: a, b

Out[11]: (7, -1)

Object types in Python

« Atomic:
— numbers (iIn R: numeric)
— booleans (true, false) (in R: logical)

« Container: (contains other elements)

— Sequences:
 Strings: “Hello World!” (in R: a string
IS atomic, not a sequence)
 Lists: [1, 2, “three”] (in R: “list”)
e Tuples: (1, 2, “three™) (not in R)
— Sets: {'a', 'b', 'c'} (notin R)

— Dictionaries: {“R”: 51, “Python”: 29} (not 1in R)

Object types in Python with
humpy module

e Container:

— Important: in Python, unlike R, arrays (and matrices)
are not a basic type. It is necessary to use a module

— Vectors and matrices: (in R: vector, matrix)

array([[1, 2, 3],
[4, 5, 6]])

Object types in Python with
Pandas module

e Container:

— Important: in Python, unlike R, dataframes are not a
basic type. It is necessary to use a module

— Dataframes:

SepalLength SepalWidth PetalLength PetalWidth Name

0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa

Object types in Python

 Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
* Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Numbers

e integer: 12345, -32 Operations with numbers:
* Long integer: 999999999L o+ - * |/

o float: 1.23, 4e5, 3e-4 e **:power

e octal: 012, 0456 // Integer division

* hex: 0xf34, 0X12FA * 0o division remainder
e complex: 3+44, 2J, 5.0+2.5j .

>>> 123 + 222 # Integer addition

345

>>>15*4 # Floating-point multiplication

6.0

>>> 2 ** 100 # 2 to the power 100
1267650600228229401496703205376

Object types in Python

- Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
* Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Booleans

Whether an expression is true or false

*Values: True, False

Comparisons: ==, <=, >= =, . Combinations: and, or, not
(inR: &&, ||, 1)
In [18]: 3==3 In [26]: (3==3) and (3 < 4)
Out[18]: True Out[26]: True
In[19]: 3==4 In [27]: (3==3) or (3<4)
Out[19]: False Out[27]: True
In[20]: 3< 4 In [28]: not((3 == 3) or (3 < 4))
Out[20]: True Out[28]: False
In [21]: "aa" < "bb"
Out[21]: True

Booleans

 Notes:
— 0 and None are false
— Everything else Is true

— True and False are just aliases for 1 and O respectively

In [14]: 1and O
Out[14]: O

In [15] lor0
Out[15]: 1

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Container:
— Sequences:

 STriNgs: “Hello World!”
o Lists: [1, 2, “three”]
e Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

String Literals

» They can be defined either with double quotes () or single quotes ()

In [30]: "Hello world"
Out[30]: 'Hello world'

In [31]: 'hello world'
Out[31]: 'hello world'’

 + s overloaded to do concatenation

In [16]: x = 'hello'

In [17]: x = x + " world'
In [18]: print(x)

hello world

String Literals: multi-line

« Using triple quotes, strings can be defined across multiple lines

>>> g ="""]"m a string
much longer
than the others :)"""

>>> print(s)

[’m a string

though I am much longer
than the others :)

Strings: some functions

* len(string) — returns the number of characters in the String
» str(object) — returns a String representation of the Object

In [56]: x ='ABCDEF
In [57]: len(X)
Out[57]: 6

In [58]: str(10.1)
Out[58]: '10.1'

Strings: some functions

« Some string functions are available only within a module, and
the dot (.) notation must be used (similarly to math.sgrt()).
The module for strings is called str.

 For instance, lower() and upper() are two such functions:

In [73]: x ='It was the best of times, it was the worst of times*

In [74]: str.lower(x.lower) # Convert to lowercase
Out[74]: 'it was the best of times, it was the worst of times*

In [75]: str.upper(x) # Convert to uppercase
Out[75]: 'I'T WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES'

String functions

 Other string functions: count, split, replace

In [73]: x ="lIt was the best of times, it was the worst of times'

In [77]: str.count(X, 'was') # count counts how many times ‘was’ appears in x
Out[77]: 2
In [79]: print(str.split(x, ' ")) # split splits string x with space * “ separator

['It', 'was', 'the', 'best’, 'of', 'times,’, 'It', 'was', 'the’, ‘worst', 'of', 'times']

In [80]: str.replace(x, 'was', 'is") # replace replaces ‘was’ by ‘is’ wherever it appears in X
Out[80]: "It is the best of times, it is the worst of times'

<
%
° . O"f’
String functions %,
Typically, if you can call a function as module.function(object, other }..//

arguments), you can also use another equivalent (but shorter) syntax:
object.function(other arguments)

« That s, there are two different (but equivalent) ways:
1. object.function(arguments)
2. module.function(object, arguments) # We already know this one

. Examples:ln [32]: x ='It was the best of times, 1t was the worst of times'

In [33]: x.lower() In [36]: x.upper()
Out[33]: "It was the best of times, | | Out[36]: 'IT WAS THE BEST OF TIMES,
it was the worst of times* IT WAS THE WORST OF TIMES®

In [34]: # is equivalent to In [37]: # is equivalent to
In [35]: str.lower(x) In [38]: str.upper(x)

Out[35]: "It was the best of times, | | Out[38]: 'I'T WAS THE BEST OF TIMES,
it was the worst of times' IT WAS THE WORST OF TIMES'

String functions: 2 ways
« That s, there are two different (but equivalent) ways: g
1. object.function(arguments) 4”}/

2. module.function(object, arguments) # We already know this one
Note: Use dir(°) to see all methods for strings (dir(3) shows all methods for integers, etc.)

« Examples: In[32]: x ='It was the best of times, it was the worst of times'

In [39]: x.count(‘was') In [45]: x.replace(‘was’, 'is')

Out[39]: 2 Out[45]: "It is the best of times, it is the worst of times'
In [40]: # is equivalent to In [46]: # is equivalent to:

In [41]: str.count(X, 'was') In [47]: str.replace(X, 'was', 'is')

Out[41]: 2 Out[47]: "It is the best of times, it is the worst of times

In [42]: print(x.split(* "))
['It', 'was', 'the', 'best’, 'of', 'times,’, 'it', 'was', 'the', 'worst', 'of', 'times']

In [43]: # is equivalent to:

In [44]: print(str.split(x, "))
['It', 'was', 'the', 'best’, 'of', 'times,’, 'it', 'was', 'the', ‘worst', 'of', 'times']

String functions: 2 ways %,

« That s, there are two different (but equivalent) ways:
1. object.function(arguments)

2. module.function(object, arguments) # We already know this one

In [39]: x.count(‘was')
Out[39]: 2

In [40]: # is equivalent to

In [41]: str.count(X, 'was')
Out[41]: 2

b)

Notice that the first way is shorter and you don’t
need to remember the name of the module (str)
Only those methods listed with dir(‘was’) can be
used

Note about replace

 Be careful, replace() does not modify the object
(but some methods do! modify the object)

In [31]: x="It was the best of times, it was the worst of times'
In [32]: x.replace(‘'was', 'is')

Out[32]: "It is the best of times, it is the worst of times'

In [33]: X

Out[33]: 'It was the best of times, it was the worst of times'

Example: string functions

« Split a sentence x using both syntax cases:
— First case: using split as a function of x: x.split()
— Second case: using split as a function of module str: str.split(x)

In [12]: x = "It was the best of times, it was the worst of times'
In [13]:x
Out[13]: 'It was the best of times, it was the worst of times'

Example: string functions

« Split a sentence x using both syntax cases:
— First case: using split as a function of x: x.split()
— Second case: using split as a function of module str: str.split(x)

In [13]:x

In [12]: x = "It was the best of times, it was the worst of times'

Out[13]: 'It was the best of times, it was the worst of times'

In [14]: # First case
In [15]: x.split(* ")
Out[15]:

[lt,

‘was',

'the’,

‘best’,

‘of',

'times,’,

It

'‘was',

'the’,

‘worst',

'of',

'‘times']

In [16]: # Second case: split as function of module str
In [17]: strsplit(x, '")
Out[17]:

[Tt

'was',

'the’,

best’,

'of,

'times,’,

it!,

'was',

'the’,

'worst',

'of,

'times'|

Positive 1 2 3 4
indices
S 609 ‘17 62, ‘37 ‘47

s ='012345'

659

Substrings (slicing)

Slicing = obtaining substrings from strings

>>> 5 ='012345°
>>> 5[0]

coa \
>>> 5[1]
¢ 1 b

>>> 5[3]

g
>>> s[1:4]/

123’

« Generic slicing sentence: s[start:end:by]
« Obtain elements from start to (end-1) with
steps of “by”

wORTANT:
«= start begins at O!!
 _ The slice (or substring) includes values
from start to end-1!!!

 start >=0
* end< len(s)
* by: step

To remember: s[:k]+s[k:] =s

Positive
indices

Negative
indices

.« o+ =2 w5 Substrings (slicing)

>>> ¢ ="'012345' Generic sentence: s[start:end:by]
>>>5[2:] Excluding start or end is the same as
'2345' \ index O or last index, respectively
>>> s[:4] \\ s[2:] == s[2:6] == s[2:len(s)]
0123 T s[:4] == 5[0:4]

>>> s[-l]\
g Negative indices start at the end of the string

>>> S[-Z]\\ s[-1] == s[5] == s[len(s)-1]
‘4’ - s[-2] == s[4] == s[len(s)-2]
>>> s[-6]< s[-6] = s[-len(s)] == s[O]

607

Substrings (slicing)

Slicing = obtaining sublists from strings (or from lists)

Positive
indices

Negative -6
indices
S 609 ‘19 627 63) 649 ‘59
Stringz 6A9 CBS CC) (.D) CE’ CF’
>>> string2 = ‘ABCDEF' >>> string2[-1]
>>> string2[2:] T
‘CDEF"' >>> string2[-2]
6E9
>>> 5[:4] :
>>> -
‘ ABCDE' i string2[-6]

Negative
indices

S 609 ‘1’ 627 ‘3’ ‘4’

Positive
indices

= Substrings (slicing)

by: step

Generic sentence: s[start:end:by]

>>> 5 ='012345'

‘02'
>>>5[0::2] <
‘024'

‘543210’
>>>g[-1:-2]

>>>g[-10-1]

>>>5[0:4:2] <—— Get indices from 0 to 3 by 2 (even indices)

-~ Get indices from 0 to end by 2 (even indices)

Get indices from end to beginning by -1
(reverse order)

— Get indices from end to beginning by -2

‘531

(indices 5, 3, 1 (or equivalently -1, -3, -5)

Exercise

1. Create any string, for instance:

‘In a village of La Mancha, the name of which I have no desire to
call to mind’

2. Convert It to uppercase:

'IN A VILLAGE OF LA MANCHA, THE NAME OF WHICH I HAVE NO
DESIRE TO CALL TO MIND'

3. Reverse It;

'DNIM OT LLAC OT ERISED ON EVAH | HCIHW FO EMAN EHT
,AHCNAM AL FO EGALLIV A NI

4. Qbtain another string by keeping one character every four

characters (via slicing):
'D L EENA HOAHAAL LI’

String Formatting: format

 <formatted string>.format(<elements to insert>)

>>>"0ne, {}, three".format(2)
'One, 2, three'

>>> {1, two, {}".format(1,3)

1, two, 3

>>>"{} two {}".format(1, 'three’)

'1 two three'

>>>"{0} two {1}".format(1, 'three’)
'l two three*

>>>"{1} two {0}".format(1, 'three’)
'‘three two 1'

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o LIStS: [1, 2, “three”]
e Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Lists

Ordered collection of data >>>x = [1,'hello’, (3 + 2j)]
. >>> X

tElements can be of different 1. hello, (3+2j)]

YPES >>> X[2]

Same subset (slicing) (3+2))

operations as Strings >>>x[0:2]

[1, 'hello]

Lists: Modifying Content

Lists are mutable (i.e. they can be modified. Strings cannot)

« X[1] =a reassigns the ith >>> X = [1,2,3]
element to the value a >>>Y =X

+ Important: variables contain 50 X[1]=15
references (pointers) to the 1, 1;(, 3]
object, not the object itself >>>y
(unlike R) [1, 15, 3]

 Since x and y point to the same
list object, both are changed

Lists: references vs. copies

» |f a copy Is needed instead of a reference, the copy
function can be used (import copy)

Reference: x and y are the same thing Copy: a and b are different things
In [58]: x =[1, 2, 3] In [63]: import copy
In [59]:y =X In[64]: a=11, 2, 3]

In [65]: b = copy.deepcopy(a)
In [60]: x[1] =15
In [66]: a[1] = 15

In [61]: X

Out[61]: [1, 15, 3] In [67]: a

In [62]: y Out[67]: [1, 15, 3]
Out[62]: [1, 15, 3] In [68]: b

Out[68]: [1, 2, 3]

Lists: Modifying Content

» X[I1:J:K] = b reassigns the sublist defined by i:j:k to list b

In[7]: x=[0, 1, 2, 3, 4, 5]

In[8]:y =X

In [9]: xX[1:3] = ['one’, 'two', 'three']

In [10]: x

Out[10]: [O, 'one’, 'twa', 'three', 3, 4, 5]
In [11]:y

Out[11]: [O, 'one’, 'twao’, 'three’, 3, 4, 5]

Lists: Modifying Content

x.append(12) inserts element 12 at
the end of the list

x.extend([13, 14]) extends list [12,
13] at the end of the list

In both cases the original list is
modified!!!

+ also concatenates lists, but it
does not modify the original list

In [14]: x =[1,2,3]

In [15]: x.append(12)

In [16]: X

Out[16]: [1, 2, 3, 12]

In [18]: x.extend([13, 14])
In [19]: x

Out[19]: [1, 2, 3, 12, 13, 14]

In [20]:y =1, 2, 3]
In[21]:y +[13, 14]
Out[21]: [1, 2, 3, 13, 14]
In [22]:y

Out[22]: [1, 2, 3]

Reminder: two ways of calling
functions on objects

« Let us remember that there are two ways of applying functions to
lists (just as with strings):

1. module.function(object, ...)
2. object.method(...)

In[27]: x =1, 2, 3]

In [28]: list.extend(X, [13, 14])
In [29]: X

Out[29]: [1, 2, 3, 13, 14]

is equivalent to:

In[30]: x =11, 2, 3]

In [31]: x.extend([13, 14])
In [32]: X

Out[32]: [1, 2, 3, 13, 14]

Lists: deleting elements
 Function del:

In [33]: x = list(range(10))

In [34]: x

Out[34]: [0, 1, 2,3,4,5,6, 7,8, 9]
In [35]: del(x[1])

In [36]: X

Out[36]: [0, 2, 3,4, 5,6, 7, 8, 9]
In [37]: del(x[2:4])

In [38]: x

Out[38]: [0, 2,5, 6, 7, 8, 9]

Sorting lists

Two ways: sort() and sorted()
list.sort() changes the list, sorted() does not
reverse=True can be used for reverse order

print("ORIGINAL LIST")
print(unique_words)

print("SORTED LIST")
print(sorted(unique_words))

The original list does not change
print(unique words)

print("MODIFYING LIST SORT")
print(unique_words.sort())

The original variable is modified
print(unique words)

ORIGINAL LIST

["a", 'best', 'care', 'do’, 'ground', '"hobbit', 'hole', 'i', 'in', 'it", 'la’', 'lived', 'mancha‘’, 'name', 'not', 'of', 'place’,
‘remember’, ‘somewhere', ‘the', 'there’, "times’, 'to', 'was’, ‘whose', ‘worst’]

SORTED LIST

["a", 'best', 'care’', 'do’, 'ground', "hobbit', 'hole', 'i', 'in', 'it", 'la’', 'lived', 'mancha‘’, 'name', 'not', 'of', 'place’,
‘remember’, ‘somewhere', ‘the', 'there’, 'times', 'to', 'was', ‘whose', ‘worst']

['a", 'best', ‘care’, 'do’, ‘ground', ‘hobbit', ‘hole', ‘'i‘, ‘in', 'it", 'la’', ‘lived’', 'mancha’', ‘name’', 'not’, 'of', 'place’,
‘remember ', ‘somewhere’, "the', 'there', 'times’, 'to', 'was’', 'whose', ‘worst']

MODIFYING LIST SORT

None

[*a", 'best', ‘care’, 'do’, ‘ground', ‘hobbit', ‘hole', ‘'i‘, 'in', 'it", 'la', ‘lived’', 'mancha’, ‘'name’', 'not’, 'of', 'place’,
‘remember', ‘somewhere’, "the', 'there', 'times’, 'to', 'was’', 'whose', ‘worst']

Reducing lists

« How to compute, for instance, the sum of
the numbers in a list

: numbers = [1, 7, 10, 2, 9, 8]

: # Adding a List of numbers using a lLoop
sum = @
for number in numbers:
sum = sum + number

print(sum)

37

: # Adding a Llist of numbers using reduce
from functools import reduce
sum = reduce(lambda x,y:x+y, numbers)

print(sum)

37

Exercises

« Compute the product of all elements in a list
of numbers using reduce

e Concatenate all words in a list of words
using reduce

Exercise

 Let us suppose that we have three lists of
words. Compute the unigue words In the
three lists (hint: use reduce and sets)

sentences = ["In a hole in the ground there lived a Hobbit".lower().split(' "),
"It was the best of times it was the worst of times".lower().split(' "),
"Somewhere in la Mancha in a place whose name I do not care to remember”.lower().split(’' ')]

Solution

sentences = ["In a hole in the ground there lived a Hobbit".lower().split(' '),
"It was the best of times it was the worst of times".lower().split(' '),
"Somewhere in la Mancha in a place whose name I do not care to remember".lower().split(' ')]

from functools import reduce

Transform List of sentences to Llist of sets
sentences = [set(s) for s in sentences]

Now, we compute the union of all the sets
unique_words = reduce(lambda x,y: x|y, sentences)
print(unique_words)

We can convert the set to a list
unique_words = list(unique words)
And then, sort the Llist
unique_words.sort()

Beware, sort changes the list!
print{unique_words)

{'somewhere’, 'remember', 'hole', 'the", 'mancha’,

'remember’, ‘somewhere’, "the', 'there', 'times’,

‘in*, ‘'ground', ‘best’, 'not', 'place’, 'la’,
'whose', 'name', ‘worst', 'lived', "to', 'a', 'there', 'hobbit', 'i', ‘was', 'it'}
["a', 'best', ‘care', 'do’, "ground’, ‘"hobbit', ‘hole', 'i‘', ‘in’', "it', 'la’, 'lived',

'to', 'was', ‘whose', "worst']

"'mancha’,

"times',

'name’,

‘care', 'do', 'of',

‘not’, 'of', 'place’,

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Compound:
— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
e Tuples: (1, 2, “three”)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Tuples

« Tuples are immutable
versions of lists

o Nt i In [44]: x=(1,2,3)
One strange point is the | I 45T (L]
format to make a tuple with Out[45]: (2, 3)

In [46].(2,)
6]: (2,)
In [47]: (2)
Out[47]: 2

one element:

‘.’ 1s needed to differentiate
from the mathemati
expression (2)

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
e Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
—Dictionaries: {“R”: 51, “Python”: 29}

Dictionaries

A set of key-value pairs. A key can be any non-mutable object
(such as strings, numbers, or tuples of non-mutable objects).

Dictionaries are mutable
Example number of bottles of different drinks
Access and modification by key

In [47]. d = {'milk": 3, 'beer": 21, 'olive oil": 2}
In [48]: d

Out[48]: {'beer": 21, 'milk": 3, 'olive oil': 2}

In [49]: d['milk']

Out[49]: 3

In [50]: d['milk] = 4

In [51]: d

Out[51]: {'beer": 21, 'milk": 4, 'olive oil': 2}

Dictionaries: Add/Delete

 Assigning to a key that does not exist adds an entry:

In [52]: d['coffee’] =3
In [53]: d
Out[53]: {'beer": 21, 'coffee': 3, 'milk': 4, 'olive oil': 2}

» Elements can be deleted with del (like with lists)

In [54]: del(d['beer'])
In [55]: d
Out[55]: {'coffee': 3, 'milk': 4, 'olive oil': 2}

Dictionaries

 Obtaining keys and values as lists

d={'milk": 3, 'beer': 21, 'olive o0il": 2}
print(d)

We can get the List of values
values = list(d.values())
print(values)

We can get the List of keys
keys = list(d.keys())
print(keys)

[3, 21, 2]
['milk’, "beer’, "olive o01l']

Iterating over dictionaries

We can iterate through all elements in a dictionary
for key in d.keys():
print(key + " " + str(d[key]))

milk 3
beer 21
olive oil 2

We can iterate through all elements 1in a dictionary
for key,value in d.items():
print(key + " " + str(value))

milk 3
beer 21
olive oil 2

Default Dictionaries

 |tisadictionary but it Is able to return a default value when the
key does not exist in the dictionary

:d = {'milk': 3, 'beer': 21, 'olive o0il': 2}
print(d[‘milk"])
print(d["potatoe™])

3
KeyError Traceback (most recent call last)
<ipython-input-82-bd@7e32@8ceaa> in O

1d={'milk": 3, 'beer': 21, 'olive o0il': 2}
2 print(d['milk’])
----> 3 print(d["potatoe”])

KeyError: 'potatoe’

: from collections import defaultdict
dd = defaultdict(lambda: @, {'milk': 3, 'beer': 21, "olive o0il': 2})
print(dd[‘'milk'])
print(dd["potatoe”])

3
(5]

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
e Tuples: (1, 2, “three™)
— Sets: {'a’, 'b', 'c'}
—Dictionaries: {“R”: 51, “Python”: 29}

Sets

 Sets are like lists, but they only contain unique elements

basket = set(['apple’, ‘orange', ‘apple’, ‘pear’, ‘orange’', ‘banana’])
print(basket)

{'banana', ‘'pear’, 'apple’', 'orange'}
Checking membership

print('orange’ in basket)
print(‘'crab’ in basket)

True

False

Sets contain only unique elements
basket = set(['apple’, 'apple’, 'orange', ‘apple’, 'pear', ‘'orange’', ‘'banana’])
print(basket)

{'banana', ‘'pear’, 'apple’', 'orange'}

« Any sequence can be used to créate a set, such as strings

setl = set('abracadabra’)
print(set1)

{'b", v, e, A, et

Sets

Operations on sets: set difference, union, intersection

basketl = set(['apple', 'orange', 'apple', 'pear', 'orange’, 'banana’])
basket2 = set(['apricot’, 'coconut®’, ‘apple’', ‘pear', 'lemon’])
print(“Union™)

print(basketl | basket2)

print("Intersection™)
print(basket1l & basket2)

print('set difference’)
print(basketl - basket2)

print(’'symmetric set difference = A|B - A*B')
print(basketl ~ basket2)
print(set((basket1|basket2) - (basket1l & basket2)))

Union

{'apple', 'pear', 'apricot', 'coconut', 'lemon’, ‘banana’, ‘orange'}
Intersection

{'pear’, '"apple'}

Set difference

{'banana‘’, 'orange'}

symmetric set difference = A|B - A"B

{"lemon', 'banana', ‘orange', 'apricot’, ‘coconut’}

{'lemon', 'banana‘, ‘orange', ‘'apricot’', ‘coconut'}

Sets. Exercise

o Use sets to:

— Compute the unique letters in strings
“abracadabra” and “alacazam”

— Compute the letters that are in “abracadabra”
but not 1n “alacazam”

Data Type Summary

 Lists, Tuples, and Dictionaries are containers that
can store any type (including other lists, tuples, and

dictionaries!)
 Only lists and dictionaries are mutable

 All variables are references, but copies can be made

The Python Programming
Language:
Flow Control

Topics

1. If ... then ... else

2. Loops:
— While condition ...
— For ...

3. Functions
4. High-level functions (map, filter, reduce)

If condition :
sentencel
sentence2

next sentence

If condition :
sentencel
sentence2

else :
sentencea
sentenceb

next sentence

If Statements

if condition :
sentencel
sentence2

elif condition3 :
sentencea
sentenceb

else :
sentencex
sentencey

next sentence

Example:

Indentation

x = 30

if x<=15:)

™\ y=x+15

\elifx <=30(:)
y=x+30
lese@

y—X
Sentence that C e
follows the L print 'y =",y
“1f” (outside 7
of the “if” _
block) Result is: ?

If Statements

Example:

x = 30

if x<=15:)

y=x+15
elif x <= 30(:)

Resultis: y = 60

Note on indentation

Python uses indentation instead of
braces (or curly brackets) to
determine the scope of expressions

All lines must be indented the same
amount to be part of the scope (or
Indented more if part of an inner
scope)

This forces the programmer to use
proper indentation since the
Indenting is part of the program!

Indentation made of four spaces Is
recommended

Indentation

Sentence that
follows the

Example:

x = 30
ifx<=15:
N y=x+15
Y‘}lifx<=30 ,

y=x+30
%lse@

y=Xx
(4 (4

Zprint y="°y

“if” (outside 7
of the “if”
block)

Exercise

e Use If to determine whether a number 1s
odd or even, and then print “it’s an odd
number”’ or “i1t’s and even number”

While Loops

While condition is true, execute sentences in the while block
(sentencel, sentence2, ...)

Whlle CO”ditiOﬂ@ phrase = ['Somewhere', 'in', 'La', 'Mancha']
index = 0
Sentencel while index < len(phrase)
sentence2 print phrase[index]
index = index + 1

print '** Words printed, while finished!!'

Next sentence . N
(outside while block) | ;,

La
Mancha
** Words printed, while finished!!

For Loops

variable takes succesive values in the sequence

for variable in sequenc@
sentencel
sentence2

Next sentence (outside for block)

1 1

phrase = ['Somewhere', 'in', 'La', '"Mancha']
index = 0
for word in phrase

print word

print '** Words printed, "for loop" finished!!'

Somewhere

in

La

Mancha

** Words printed, "for loop" finished!!

Exercise

Create a list of numbers [0, 1, 3, 4, 5, 6]

Iterate over this list by using a for loop

— For each element in the list, print “even’ if the
number Is even and “odd” if the number 1s odd

Reminder: a number X Is even If the
remainder of the division by 2 is zero. That
1S: (X% 2==0)

Once you are done, try with another list:
1,7, 3, 2,0]

Exercise

 Create a list of numbers [0, 1, 3, 4, 5, 6]
» lterate over this list by using a for loop
« Add all the numbers together

Exercise

» Use a for and a default dictionary to count
words In the hobbit_words sentence

hobbit words = "In a hole in the ground there lived a Hobbit".lower().split(® ')
print(hobbit words)

["'in", 'a"', 'hole', 'in', 'the', 'ground', "there’, 'lived', 'a', "hobbit']

my dict = defaultdict(lambda: ©)
for word in words:
my dict[word] += 1

my dict

defaultdict(<function _ main_ .<lambda>()>,
{'in': 2,
‘a': 2,
"hole': 1,
"the': 1,
"ground’: 1,
"there': 1,
"lived': 1,
"hobbit': 1})

For and range

 range() Is an Iiterator
* |t is useful to iterate over a range of values

: for 1 in range(5):

print(i)

BWN R

: for i in range(3,5):

print(i)

3
il

: for i in range(0,10,3):

print(i)

O g W ®

s = "in a hole in the ground there lived a hobbit®
words = s.split(’ ")
for 1 in range(len(words)):
print('Word number {@} is: {1}'.format(i, words[1i]))

Word number @ is: in
Word number 1 is: a

Word number 2 is: hole
Word number 3 1is: in
Word number 4 is: the
Word number 5 is: ground
Word number 6 is: there
Word number 7 is: lived
Word number 8 is: a

Word number 9 is: hobbit

Iterators

Iterators (such as range()) allow to iterate over values (i.e. used in a for

loop)
Iterators are not values, but we can use list() to get the values of an
iterator

: | # Range 1is an iterator, not a list of values
a = range(1@)
print(a)

range(@, 10)

: | # We can get the List of values from an iterator by using Llist
print(list(a))

[, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Beware! range() returned a list in version 2.7, but returns an iterator in
vesion 3.7. There may be cases in this tutorial where list(range(a,b))
should have been used, but range(a,b) is (wrongly!) used.

Loop Control Statements

break Jumps out of the closest
enclosing loop (or while)

continue Jumps to the top of the closest
enclosing loop (or while)

pass Does nothing, empty statement
placeholder

The Loop Else Clause

» The optional else clause runs only if the loop exits
normally (not by break)

while condition : for variable in sequence :
sentencel sentencel
sentence2 sentence2
else: else:
sentencea sentencea
sentenceb sentenceb
Next sentence Next sentence (outside
(outside while block) for block)

The Loop Else Clause

» The optional else clause runs only if the loop exits
normally (not by break)

number = 14

factor = 2
while factor < number :
if number % factor == 0 :
print "Number {} is not a prime number".format (number)
break
else:
factor = factor + 1
else:

print "Number {} 1is prime".format (number)

Number 14 is not a prime number

The Loop Else Clause

» The optional else clause runs only if the loop exits
normally (not by break)

number = 13
Note: range(a,b) produces a list of numbers from a to n-1
print range (2, number)
for factor in range (Z, number)
1f number % factor ==
print "Number {} is not a prime number".format (number)
break
else: # this block is executed when the loop for exits without break
print "Number {} 1s prime".format (number)

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Number 13 is prime

Function Definition

“return X’ returns the value and ends the function exectution

def functionName (argumentl, argument2, ...) : | def max(x,y) :
sentencel ey

return =

sentence2 -

return vy

max (3,5

Parameters: Defaults

e Parameters can be
assigned default values

* They are overridden if a
parameter is given for
them

def double (x=0) :
return (2%*x)

double ()

0

double (10

Parameters: Named

 Call by name

In [7]: def myPrint(a,b,c):
 Any positional e B
arguments must In [B]: myPrint(e=10, a=2, b=14)
come before 2 14 10
named ones In a 1 [0]: T E——

call 3 19 2

Exercise

 Write a Python function that computes the
factorial of a number. If the input Is
negative, print “Error”. If there 1s no mput,
the function should compute the factorial of
ZEero.

Exercise

Define a function myDif that returns:

— If (a-b)>0 then (a-b)

— Otherwise b-a

Both a and b should have default values of O

You need to use if

Try the following function calls and see what happens:
— myDif(1,2)

— myDif(2,1)

— myDif(2)

— myDif(b=2,a=1)

Functions are first class objects

« Can be assigned to a variable
X =MaxX

« Can be passed as a parameter
« Can be returned from a function

 Functions are treated like any other variable in
Python, the def statement simply assigns a
function to a variable

Anonymous Functions

« A lambda

expression returns a - _
function object >>>1=lambdaxy :x+y
>>> f(2,3)

 The body canonly |5

be a simple
expression, not
complex statements

List comprehensions

def double(x):
“"UIt multiplies x by 2"""
return(2 * x)

def even(x):
return(x % 2 == 8)

Ist = range(1@)
print("Applying double to all elements in {}".format(lst))
print([double(a) for a in lst])

print("Filtering / selecting even elements in {}".format(lst))
print([a for a in lst if even(a)])

Applying double to all elements in range(e, 1)

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Filtering / selecting even elements in range(e, 10)
[0, 2, 4, 6, 8]

List comprehensions
* They are equivalent to loops, but more elegant

def doublei{x):
return(2¥x)

def even{x):
returnix X 2 ==

1st = range(l2)

The following is allist transformation|with a list comprehension {each element is doubled)

result = [double{a) for a inm 1st]
print{result)

[@, 2, 4, &, &, 18, 12, 14, 15, 18]
The previous list comprehension is equivalent to the following loop:

result = []

for element in lst:
result.append(double(element))

print{result)

[e, 2, 4, &, 8, 18, 12, 14, 15, 13]

List comprehensions

List comprehensicons can also be used fo filtering (selecting) elements
in a list that fulfill some condition. For instance, the following
list comprehension filters all ewven elements in the list.

result = [a for a in 1st if even(a)]
print{result)

[, 2, 4, &, E]

The previous list comprehensicon i1s equivalent to the following loop.

result = []
for element in 1st:
if{even(element)):
result.append{double{element))

print{result)

[, 4, 8, 12, 15]

Exercises

1. Use a list comprehension to compute the
length of the words in a list

hobbit words = "In a hole in the ground there lived a Hobbit".split(" ')
print(hobbit words)

['In", 'a’, "hole', "in", "the', 'ground', 'there’, "lived', 'a', 'Hobbit']
2. Use a list comprehension to convert all the
words in hobbit_words to lowercase

3. Use a list comprehension to filter the
positive numbers in a list of numbers

In [Z20]:

Writing and reading files

mySentence = "Number three iz {}".format (3)
print (mySentence)

Now, we open file
mf = open{"myFile.txt"™,
Then we write the sentenc
mf.write (mySentence)

Finally, we close the file

mf.close ()

Now, we open the file for reading

mf = open{"myfile.txt™, "r")

£ We read the vhole file inte wvariable sentenceFromFils
gentenceFromFile = mf.read()

We clos= the file

mf.claze ()

And print the sentence, in order to checke whether 1t
print ({zentenceFromFile)

Number three is 3
Number three is 3

is

Files: Input

Inflobj = open(‘data’, ‘r’) Open the file ‘data’ for
Input.

S = inflobj.read() Read whole file into one
String

S = inflobj.read(N) Reads N bytes
(N >=1)

L = inflobj.readlines() Returns a list of line
strings

Files: Input

Example for reading the whole file into
variable strings

my _file = open(“data.txt”, “r”)
strings = my_file.read()
my_file.close()

Files: Input

Example for reading line by line into my_line
and then printint it:

my file = open(*“‘data.txt”, “r’’)
for line in my_file:

print(line)
my_file.close()

Files: Output

outflobj = open(‘data’, ‘w’) | Open the file ‘data’

for writing
outflobj.write(S) Writes the string S to

file
outflobj.writelines(L) Writes each of the

strings in list L to file

outflobj.close() Closes the file

Files: Output

in_file = open(‘data.txt’, ‘r’)
out file = open(‘output.txt’, ‘w’)
for line in In_file:
out file.write(‘prefix101-"+line+’\n”)
my_file.close()

EXTRA

Shallow copy vs. deep copy

* Deep copy: it creates two completely
different objects

 Shallow copy: it copies only the references
to the objects in the list

Shallow copy vs. deep copy

« Reminder: this Is not a copy, xs and ys are
exactly the same object:

xs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
YS = XS

 Shallow copy:
ys = xs.copy()

Shallow copy vs. deep copy

>>>xs =[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>>ys = XS.copy()

>>> xs[0] = [10,20,30]

>>> print(Xs)

>>> print(ys)

[[10, 20, 30], [4, 5, 6], [7, 8, 9]]

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Shallow copy vs. deep copy

>>>xs =[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>>ys = XS.copy()

>>> xs[0][0] = 10

>>> print(Xs)

>>> print(ys)

[[10, 2, 3], [4, 5, 6], [7, 8, 9]]

[[10, 2, 3], [4, 5, 6], [7, 8, 9]]

Shallow copy vs. deep copy

>>>xs =[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>>ys = XS.copy()

>>> xs[0][0] = 10

>>> print(Xs)

>>> print(ys)

[[10, 2, 3], [4, 5, 6], [7, 8, 9]]

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

