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A Tutorial on Scikit Learn



What is Scikit Learn?

• It is the standard Python library for doing machine learning

from sklearn import ...

• Collection of machine learning algorithms and tools in 

Python.

• BSD Licensed, used in academia and industry (Spotify, bit.ly, 

Evernote).

• ~20 core developers.

• http://scikit-learn.org/stable/

• Other packages for Machine Learning in Python:

Pylearn2, PyBrain, ...

http://scikit-learn.org/stable/


The Machine Learning 
workflow

• Knowledge about the main ideas of 

Machine Learning / Statistical Learning is 

assumed

• The workflow:

– Data preprocessing

– Training:

• Training the model

• Hyper-parameter tuning

– Model evaluation (holdout, crossvalidation)



The input: the dataset

• Datasets for sklearn are numpy numeric matrices:

– This implies that categorical attributes/variables must 

be represented as:

• Integers

• One-hot-encoding / dummy variables

• However, there is a trend for integrating Pandas 

dataframes with scikit learn

• Missing values are represented as np.nan



Example of dataset: iris

• It is a dataset for classification of plants

– Attributes / features: 
• ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

– Response variable: type of plant: 
• ['setosa', 'versicolor', 'virginica']



Example of dataset: iris
In [46]: # Sklearn already contains some 

datasets

In [47]: from sklearn.datasets import load_iris

In [48]: iris = load_iris()

In [49]: print(iris.feature_names)

['sepal length (cm)', 'sepal width (cm)', 'petal 

length (cm)', 'petal width (cm)']

In [50]: print(iris.target_names)

['setosa' 'versicolor' 'virginica']

In [51]: # The actual data is a numpy matrix

In [52]: X = iris.data

In [53]: y = iris.target

In [56]: print(type(X))

<class 'numpy.ndarray'>

In [59]: print(type(y))

<class 'numpy.ndarray'>

In [54]: # Those are the input attributes

In [55]: print(X[:10,])

[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

[5.4 3.9 1.7 0.4]

[4.6 3.4 1.4 0.3]

[5. 3.4 1.5 0.2]

[4.4 2.9 1.4 0.2]

[4.9 3.1 1.5 0.1]]

In [57]: #And this is the response variable column')

In [58]: print(y[:10,])

[0 0 0 0 0 0 0 0 0 0]



Example of dataset: iris
plt.scatter(X[:, 0], X[:, 1], c=y, 

cmap=plt.cm.Paired)

plt.xlabel('Sepal length')

plt.ylabel('Sepal width')

plt.show()



Models

• There are many types of models

• We already know KNN (k-nearest neighbour)

• There are more:

– Trees

– Ensembles: bagging (random forests, gradient 

boosting, stacking)

– Functions: neural networks, support vector machines, 

...



Models: k-nearest neighbor
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Models: decision tree



Training a decision tree

In [93]: from sklearn import tree

# Here, we define the type of training method (nothing happens yet)

In [94]: clf = tree.DecisionTreeClassifier()

# Now, we train (fit) the method on the (X,y) dataset

In [95]: clf = clf.fit(X, y)

# clf contains the trained model

In [96]: clf

Out[96]:

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,

max_features=None, max_leaf_nodes=None,

min_impurity_decrease=0.0, min_impurity_split=None,

min_samples_leaf=1, min_samples_split=2,

min_weight_fraction_leaf=0.0, presort=False, random_state=None,

splitter='best')



Training and evaluating models 
with a test partition (holdout)

Attributes    Class

ML method

Model

Success rate 
computation
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^

Rule: never evaluate a model with the same data used for training it

Performance measure

2/3

1/3



Training and evaluating models 
with a test partition (holdout)

• First, we create the train / test partitions

In []: from sklearn.model_selection import train_test_split

In []: from sklearn import preprocessing

# train_test_split creates the train and test partitions, respectively

# random_state = 33 is for reproducibility purposes

# 0.33 = 1/3 is the proportion of data for testing (67% = 2/3 for training)

In []: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, 

random_state=33)

In []: print(X_train.shape, y_train.shape)

(112, 4) (112,)

In []: print(X_test.shape, y_test.shape)

(38, 4) (38,)



Estimating performance (evaluation) 
with a test partition (holdout)

• Then, we train the model with fit, get predictions on the test set with 

predict, and compute the performance of the model

In []: from sklearn import metrics

In []: from sklearn import tree

In []: clf = tree.DecisionTreeClassifier()

# Making results reproducible

In []: np.random.seed(0)

In []: clf.fit(X_train, y_train)

In []: y_test_pred = clf.predict(X_test)

In []: print(y_test_pred)

[1 1 0 1 1 2 0 0 2 2 2 0 2 1 2 1 1 0 1 2 0 0 2 0 1 1 1 1 2 2 1 1 2 2 2 2 2 1]

In []: print(y_test)

[1 1 0 1 2 2 0 0 2 2 2 0 2 1 2 1 2 0 1 2 0 0 2 0 2 2 1 1 2 2 1 1 2 2 2 2 2 1]

In []: print(metrics.accuracy_score(y_test, y_test_pred))

0.8947368421052632



Crossvalidation

• The available data is divided into k folds (k partitions). With k=3, three partitions 
X, Y, and Z.

• The process has k steps (3 in this case):

– Learn model with X, Y, and test it with Z (T1 = success rate on Z)

– Learn model with X, Z, and test it with Y (T2 = success rate on Y)

– Learn model with Y, Z and test it with X (T3 = success rate on X)

– Success rate TX = (T1+T2+T3)/3

• The final classifier CF is learned from the whole dataset (X, Y, Z). It is assumed 
that T is a good estimation of the success rate of CF

• k=10 is commonly used. K between 5 and 10 are recommended.



Available data

3-fold cross-validation evaluation

Fold X

80%

Fold Y

Fold Z

Train with X and Y, evaluate with Z

Method



Fold X

Fold Y

Fold Z

Train with X, Z; evaluate with Y

81%

Method

3-fold cross-validation evaluation

Available data



3-fold cross-validation evaluation

Fold X

Fold Y

Fold Z

Train with Y, Z; evaluate with X

78%

Method

Available data



3-fold cross-validation evaluation

Fold X 80%

Fold Y

Fold Z

81%

78%

T= 

(80%+81%+78%)/3 

= 79.7%

Evaluation

The estimation of future performance T is 

the average of the three folds.

Available data



3-fold cross-validation evaluation

Fold X 80%

Fold Y

Fold Z

81%

78%

T= 

(80%+81%+78%)/3 

= 79.7%

Evaluation

Once T has been computed, the three 

models used to compute it are discarded 

and …

Available data



Method

Available data

Fold X

Fold Y

Fold Z

Final 

model

• A final model is trained with the complete 

dataset

3-fold cross-validation evaluation



Method

Fold X

Fold Y

Fold Z

Final 

model

• A final model is trained with the complete dataset

• The estimation of future performance computed previously is kept (79.7%)

• Again, this is considered a pesimistic estimation, because the data partitions 

used to compute it were smaller (2/3) than the dataset used to train the final 

model.

3-fold cross-validation evaluation

Estimation of future 

performance = 79.7%

Available data



Estimating performance 
(evaluation) with crossvalidation

In []: from sklearn.model_selection import cross_val_score, KFold

# create a k-fold crossvalidation iterator of k=5 folds

# shuffle = True randomly rearranges the dataframe

# random_state = 0 is for making the folds reproducible

In []: cv = KFold(n_splits=5, shuffle=True, random_state=0)

In []: clf = tree.DecisionTreeClassifier()

# Making results reproducible

In []: np.random.seed(0)

In []: scores = cross_val_score(clf, X, y, scoring='accuracy', cv = cv) 

# Printing the 10 scores

In []: print(scores)

[1.0 0.9 -1. -0.93333333 -0.93333333]

# Printing the average score and the standard deviation

In []: from scipy.stats import sem # Standard deviation

In []: print("Mean score: {0:.3f} (+/-{1:.3f})".format(scores.mean(), sem(scores)))

Mean score: -0.953 (+/-0.020)



Exercise: regression
• We are going to use the Boston dataset, about 

predicting house prices 

# Getting the data

from sklearn.datasets import load_boston

boston = load_boston()

print(boston.DESCR)

X = boston.data

y = boston.target



Exercise: regression

• Use train (75%)/test (25%) for training / evaluating a 

decision tree regression model:

 tree.DecisionTreeRegressor()

 metrics.mean_squared_error

 Do the same with KNN:

 KNeighborsRegressor

 find it yourself in the scikit docs (https://scikit-learn.org/)

 Now, do the evaluation with 5-fold crossvalidation:

 scoring='neg_mean_squared_error', 



Hyper-parameters

• All machine learning methods have hyper-

parameters that control their behavior

• For example, KNN has K = number of 

neighbors:

– n_neighbors

• For example, decision trees have (at least):

– max_depth

– min_samples_split



MAX-DEPTH HYPER-PARAMETER FOR 
DECISION TREES

• With max_depth = 1, boundary is a line.

X=2 X=6

Y=4



MAX-DEPTH HYPER-PARAMETER FOR 
DECISION TREES

• With max_depth = 2, boundary is non-linear

X=2 X=6

Y=4

Red



• With max_depth = 3, boundary is non-linear and more complex than with

max_depth = 2

• And so on

X=2 X=6

Y=4

Red

Blue

MAX-DEPTH HYPER-PARAMETER FOR 
DECISION TREES



NUMBER OF NEIGHBORS IN KNN



Hyper-parameters

• It is possible to set them by hand when the 

method is defined:

In [191]: clf = tree.DecisionTreeClassifier()

In [192]: clf

Out[192]:

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, 

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, 

min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, 

splitter='best')

In [193]: clf = tree.DecisionTreeClassifier(max_depth=4)

In [194]: clf

Out[194]:

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=4, max_features=None, 

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, 

min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best')



Automatic Hyper-parameter 
tuning

• If there is more than one hyper-parameter, grid 

search is typically used.

• All possible combinations of hyper-parameters is 

systematically evaluated.

• Computationally expensive.



Grid search
MAX_DEPTH 2 4 6 8

MIN_SAMPLES

2 (2,2) (2,4) (2,6) (2,8)

4 (4,2) (4,4) (4,6) (4,8)

6 (6,2) (6,4) (6,6) (6,8)

Grid search means: try all possible combinations of values for 

the two (or more) hyper-parameters. For each one, carry out a 

train/validation or a crossvalidation, and obtain the success rate. 

Select the combination of hyper-parameters with best success-

rate.
MAX_DEPTH 2 4 6 8

MIN_SAMPLES

2 70% 75% 76% 68%

4 72% 73% 81% 70%

6 68% 70% 71% 67%



Grid search

for(maxdepth in c(2,4,6,8)){

for(minsplit in c(2,4,6)){

model = train(train_set, maxdepth, minsplit)

evaluation = "evaluate model with validation 

set"

}

}

"Return (maxdepth, minsplit) of model with best 

evaluation"



Random search
maxdepth 2 4 6 8

minsplit

2 (2,2) (2,4) (2,6) (2,8)

4 (4,2) (4,4) (4,6) (4,8)

6 (6,2) (6,4) (6,6) (6,8)

Random search: test randomly only some of the combinations (Budget=4, in this 

case). 

maxdepth 2 4 6 8

minsplit

2 70% 75% 76% 68%

4 72% 73% 81% 70%

6 68% 70% 71% 67%



Random search

budget = 100 # budget is the maximum amount of hyper-parameter values to try

while(budget>0){

budget = budget – 1 # Decrease budget

(maxdepth, minsplit) = “get a random combination of hiper-parameter values”

model = train(train_set, maxdepth, minsplit)

evaluation <- "evaluate model with validation set"

}}

"Return (maxdepth, minsplit) of model with best evaluation"



Automatic Hyper-parameter 
tuning

• In general, hyper-parameter tuning is a search in a parameter space 

for a particular machine learning method (or estimator). 

Therefore, it is necessary to define:

– The search space (the hyper-parameters of the method and their 

allowed values)

– The search method: so far, grid-search or random-search, but 

there are more (such as model based optimization)

– The evaluation method: basically, validation set (holdout) or 

crossvalidation

– The performance measure (or score function): 

missclassification error, balanced accuracy, RMSE, …



Defining the search space for 
grid-search

• For grid search, we must specify the list of 

actual values to be checked:

• Equivalently:



Defining the search space for 
random search

• For random search, we can also specify the list of values to be checked

• But also, the statistical distribution out of which values can be sampled 

(this is preferred):

• sp_randint is a discrete uniform distribution. uniform and expon

(gaussian) could be used for continous hyper-parameters



HYPER-PARAMETER tuning 
with crossvalidation

• Now, we are going to use 3-fold crossvalidation for hyper-parameter tuning, but 

train/test (holdout) for model evaluation (a.ka. estimation of future performance)

• First, we train with A and B, and validate with C

Attr. x            Class y

A
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b
le
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a
ta

60% 92% 70%

1 2 3
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t
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• Then, we train with A and C, and validate with B

Attr. x            Class y

61% 90% 69%

1 2 3

C

A

B

T
e

s
t

T
ra

in
HYPER-PARAMETER tuning 

with crossvalidation



• Finally, we train with B and C, and validate with A

Attr. x            Class y

60% 93% 71%

1 2 3

C

A

B
º

T
e

s
t

T
ra

in
HYPER-PARAMETER tuning 

with crossvalidation



• Finally, each hyper-parameter value is evaluated by computing the average of the 

three folds.

• Max depth = 2 is the best.

Attr. x            Class y

60% 93% 71%

C

A

B
61% 90% 69%

60% 92% 70%

1 2 3

60.33%  91.66 %   70%   = averages 

T
e

s
t

T
ra

in
HYPER-PARAMETER tuning 

with crossvalidation



60% 93% 71%

61% 90% 69%

60% 92% 70%

1 2 3

60.33%    91.66 %   70%    

Model with max depth = 2

Attr. x            Class y

1

T
e
s
t

T
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• A model is trained with the whole train partition, with the best max 

depth.

HYPER-PARAMETER tuning 
with crossvalidation



• And then it is evaluated with the test partition

Model with max depth = 2

Attr. x            Class y

1

T
e
s
t

T
ra

in

90.5 % 

60% 93% 71%

61% 90% 69%

60% 92% 70%

1 2 3

60.33%    91.66 %   70%    

HYPER-PARAMETER tuning 
with crossvalidation



Training with hyper-parameter 
tuning, then testing

• Training: grid-search with 5-fold crossvalidation

• Evaluation: testing partition
from sklearn.datasets import load_iris

from sklearn import tree

from sklearn.model_selection import train_test_split, 

GridSearchCV

from sklearn import metrics

iris = load_iris()

X = iris.data

y = iris.target

# Defining the train/test partitions

# random_state is for reproducibility

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.25, random_state=0)

# Defining the method

clf = tree.DecisionTreeClassifier()

# Defining the Search space

param_grid = {'max_depth': range(2,16,2),

'min_samples_split': range(2,34,2)}

# Defining a 5-fold crossvalidation grid-search

clf_grid = GridSearchCV(clf, 

param_grid,

scoring='accuracy',

cv=5 , n_jobs=1, verbose=1)

# Training the model with the grid-search

np.random.seed(0) # This is for reproducibility

clf_grid.fit(X_train, y_train)

# Making predictions on the testing partition

y_test_pred = clf_grid.predict(X_test)

# And finally computing the test accuracy

print(metrics.accuracy_score(y_test_pred, y_test))

Fitting 5 folds for each of 112 candidates, totalling 560 fits

0.9210526315789473

[Parallel(n_jobs=1)]: Done 560 out of 560 | elapsed:    0.3s finished



• Shuffled (i.e. randomly assigned to train and 

validation)

HYPER-PARAMETER tuning 
with train / validation

from sklearn.model_selection import PredefinedSplit

import numpy as np

# Defining a fixed train/validation grid-search

# -1 means training, 0 means validation

validation_indices = np.zeros(X_train.shape[0])

validation_indices[:round(2/3*X_train.shape[0])] = -1

np.random.seed(0) # This is for reproducibility

validation_indices = np.random.permutation(validation_indices)

tr_val_partition = PredefinedSplit(validation_indices)

clf_grid = GridSearchCV(clf, 

param_grid,

scoring='accuracy',

cv=tr_val_partition, 

n_jobs=1, verbose=1)

# Training the model with the grid-search

np.random.seed(0) # This is for reproducibility

clf_grid.fit(X_train, y_train)

# Making predictions on the testing partition

y_test_pred = clf_grid.predict(X_test)

# And finally computing the test accuracy

print(metrics.accuracy_score(y_test_pred, y_test))

from sklearn.datasets import load_iris

from sklearn import tree

from sklearn.model_selection import train_test_split, 

GridSearchCV

from sklearn import metrics

iris = load_iris()

X = iris.data

y = iris.target

# Defining the train/test partitions

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.25, random_state=33)

# Defining the method

clf = tree.DecisionTreeClassifier()

# Defining the Search space

param_grid = {'max_depth': range(2,16,2),

'min_samples_split': range(2,34,2)}



• Not shuffled

HYPER-PARAMETER tuning 
with train / validation

from sklearn.model_selection import PredefinedSplit

import numpy as np

# Defining a fixed train/validation grid-search

# -1 means training, 0 means validation

validation_indices = np.zeros(X_train.shape[0])

validation_indices[:round(2/3*X_train.shape[0])] = -1

tr_val_partition = PredefinedSplit(validation_indices)

clf_grid = GridSearchCV(clf, 

param_grid,

scoring='accuracy',

cv=tr_val_partition, 

n_jobs=1, verbose=1)

# Training the model with the grid-search

np.random.seed(0) # This is for reproducibility

clf_grid.fit(X_train, y_train)

# Making predictions on the testing partition

y_test_pred = clf_grid.predict(X_test)

# And finally computing the test accuracy

print(metrics.accuracy_score(y_test_pred, y_test))

from sklearn.datasets import load_iris

from sklearn import tree

from sklearn.model_selection import train_test_split, 

GridSearchCV

from sklearn import metrics

iris = load_iris()

X = iris.data

y = iris.target

# Defining the train/test partitions

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.25, random_state=33)

# Defining the method

clf = tree.DecisionTreeClassifier()

# Defining the Search space

param_grid = {'max_depth': range(2,16,2),

'min_samples_split': range(2,34,2)}



Exercise

• Would you be able to do this?

– Training: grid-search with 3-fold 

crossvalidation

– Evaluation: 5-fold crossvalidation



Standarization / Normalization

• Some machine learning methods require 

attributes to be in a similar range (e.g. 

KNN)

• In scikit-learn, this can be achieved using 

the standardScaler (standarization) or the 

minMaxScaler (normalization to 0-1)



Standarization / Normalization

import sklearn.preprocessing

X_train_minmax = min_max_scaler.fit_transform(X_train)

X_test_minmax = min_max_scaler.transform(X_test)

• It is important that all pre-processing (such 

as normalization) is done with information 

obtained from the training partition (.fit), 

and then applied to the testing partition 

(.transform).



A Tutorial on Scikit Learn 
Pre-processing / Pipelines



• Preprocessing:

• Instances

• Attributes

• Pipelines are useful to 

combine pre-processing and 

training the model

Pipelines in Scikit Learn



• Instances:

– Removing outliers

– Removing noisy instances (Wilson editing rule), mainly for KNN

– Sampling in order to balance classes in imbalanced problems (such as SMOTE – Synthetic

Minority Over-sampling Technique, …) or ADASYN

• Attributes:

– Standarization / normalization (scaling to a range)

– Imputation (what to do with missing values?)

– Categorical attribute encoding into numbers

– Attribute selection

– Attribute transformation (PCA, ...)

Pre-processing



• Wilson editing rule: remove instance xi if it is classified incorrectly by the

majority class of its k neighbours:

– It removes noisy instances inside a class region

– It smooths boundaries
• It works well for KNN, but can be used for other methods too

• Example of repeated Wilson editing

imblearn.under_sampling.EditedNearestNeighbours

https://imbalanced-learn.readthedocs.io/

Wilson editing rule



https://imbalanced-learn.readthedocs.io/

SMOTE (balance minority 
classes)



• Different attributes may have different ranges (e.g. height: 0m-2m, 

weight: 0kg-100kg, …)

• The aim is that all attributes have the same range or spread

– Important for some methods such as KNN, Support Vector 

Machines, and neural networks. Not important for Decision trees. 

• If xi is an attribute / feature (i.e. a column in a data matrix)

• Normalization: xi = (xi-min(xi)) / (max(xi) – min(xi))

– New range = 0-1

• Standarization: xi = (xi-mean(xi)) / std(xi)

Standarization and normalization 
to a range



• Imputation = replacing missing values (np.nan)

• Some methods are able to deal with missing values (e.g. trees), but some methods

aren't (e.g. KNN, SVM, ...)

• Strategies:

– Remove instances with np.nan 's

– Remove attributes with np.nan 's

– Univariate: replace np.nan 's with mean, median, or mode (categorical

attributes): 

• sklearn.impute.SimpleImputer

– Multivariate: use a machine learning method to compute models of an

attribute in terms of the other attributes. Use the model to impute each

attribute, in turn.

• sklearn.impute.IterativeImputer

Imputation



• Some machine learning methods are not able to deal with 

categorical/discrete attributes

• Most commonly used: dummy variables or one-hot-

encoding (typically, only N-1 columns are kept)

Encoding categorical variables: one-
hot-encoding (dummy variables)



• However, one-hot-encoding generates too many columns for variables with many 

values.

• Alternatives: integer/label encoding 

• Problem: an artificial (false) order is introduced

Label/integer encoding

Encoding categorical variables: 
frequency and integer



• Target mean encoding (as in 

the assignment)

• https://contrib.scikit-

learn.org/categorical-

encoding/

Encoding categorical variables



• Given input attributes A1, A2, ..., An, each Ai is evaluated individually, 
computing its correlation or dependency with the class, independently of the 
rest of attributes (i.e. attributes are considered individually, rather than 
subsets)

• An attribute A1 is correlated with the class, if knowing its value implies that 
the class can be predicted more accurately

– For instance, car speed is correlated with having an accident. But the Social 
Security Number of the driver is not.

– For instance, salary may be (inversely) correlated with credit default

• How to evaluate / rank attributes (attribute/class correlation):

– Entropy (information gain), like in decision trees

– Chi-square

– Mutual information

– …

• Once evaluated and ranked, the worst attributes can be removed (according to 
a threshold)

Attribute / Feature selection



Example of filter ranking
(Housing prices)



Attribute / Feature selection

• sklearn.feature_selection.SelectKBest



Pipelines in Scikit Learn

• Sometimes training a model involves applying a sequence of methods, in most 

cases involving some preprocessing steps. 

• For example, we might want to do:

1. Imputation (to remove missing values)

2. Attribute selection (to select the most relevant features)

3. Model training

• Pipelines in sklearn are sequences of estimators: an estimator in sklearn is either a 

transformer (or pre-processing method) or a classifier/regressor (or training 

method)

Imputation Selection TrainingData Model

Transformer Transformer RegressorData Model



Why use pipelines?

1. Clear coding: a pipeline clearly states your 

preprocessing and training methods

2. Hyper-parameter tuning: each step in the 

pipeline has its own hyper-parameters. 

Pipelines make possible to tune all of them

3. Avoiding data leakage: test data should 

never be used for training, in any way



How to do preprocessing
correctly?

• Two types of pre-processing:

– Not data-dependent:

• E.g. remove ID attribute because we know it is not useful for classification

• We will do this no matter what the data matrix contains

– Data-dependent:

• E.g. remove attribute x4 because its values are not correlated with the class

• You may think the following workflow is correct, but the problem is that there might be 

some “data leakage” from the test partition to the training partition (i.e. the model will

“know” a bit about the test partition)

Available data

Training

Test
Evaluation

90%

Method
Preprocessing

E.g: imputation, 

select relevant

attributes, etc.



Preprocessing

How to do preprocessing
correctly?

• We shouldn’t use test data for training the model, in any way

Available data

Training

Test
Evaluation

90%

Method

E.g: imputation, 

select relevant

attributes, etc.



How to do preprocessing
correctly?

• It is better to create a pipeline

• E.g. for attribute selection:

DATA
Train decision

tree

Modelx1 x2 x3 x4 x5 y

Attribute

selection DATA

x1 x3 y

Pipeline: selection + tree



How to do preprocessing
correctly?

Available data

Training

Test Evaluation 90%

Pipeline (selection+tree training)

Selected attributes x1, 

x5, x20

• Which attributes are selected is decided with the training partition

only, and kept for use during testing

• The same thing is done for other preprocessing tasks:

• For attribute normalization, max(xi), min(xi) are computed

using training data only, and kept for use during testing

• For imputation, mean(xi) is computed with training data, and 

used during testing.



How to do preprocessing
correctly?

Available data

Training

Test Evaluation 90%

Selected attributes x1, 

x5, x20

• Conclusion: pipelines can be used in two different contexts:

• Training

• Testing



Pipelines in Scikit Learn
• Pipeline: a sequence of estimators (transformers and classifier/regression)

• Transformer: feature selection, imputation, normalization, binarizer, ... They 

have two methods: 

• .fit (for training data)

• .transform (typically, for testing data)

• Classifier / regressor: decision trees, knn, … Two methods: 

• .fit (for training data)

• .predict (typically, for testing data)

https://scikit-learn.org/stable/data_transforms.html

Transformer Transformer RegressorData Model

Estimators



# Getting the data

import numpy as np

from sklearn import datasets

from sklearn.model_selection import train_test_split

boston = datasets.load_boston()

X = boston.data

y = boston.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=33)

Let's see classifiers/regressors and transformers individually, 

and later, we will put them together into a pipeline.

But first, let's get some training and testing data:



Classifier / regressor: fit

• The fit method trains a model

Algorithm

Available data

Training

Test

Model

FIT

from sklearn.neighbors import KNeighborsRegressor

clf = KNeighborsRegressor()

clf.fit(X_train,y_train)



Classifier / regressor: 
predict

• The predict method obtains predictions 

from a model

Available data

Training

Test

ෞ𝑦1
ෞ𝑦2
ෞ𝑦3
...

Model

Predictions

y_test_pred = 

clf.predict(X_test)



• But let's put one nan for illustration purposes

X_train[1, 1] = np.nan

X_test[1, 1] = np.nan

X_train

X_test

In [63]: X_train

Out[63]:

array([

[2.9 e-01, 0.0 e+00, 6.2 e+00, ...],

[5.0 e-02, nan, 6.0 e+00, ...,],

[1.3 e+01, 0.0 e+00, 1.8 e+01, ...],

...,

[4.5 e-02, 0.0 e+00, 1.3 e+01, ...],

[5.2 e+00, 0.0 e+00, 1.8 e+01, ...],

[1.2 e+00, 0.0 e+00, 8.1 e+00, ...])

In [64]: X_test

Out[64]:

array([

[9.2 e-02, 0.0 e+00, 2.5 e+01, ...],

[2.5 e+01, nan, 1.8 e+01, ...],

[7.0 e+00, 0.0 e+00, 1.8 e+01, ...],

...,

[1.5 e+01, 0.0 e+00, 1.8 e+01, ...],

[2.0 e-01, 2.2 e+01, 5.8 e+00, ...],

[3.4 e-01, 0.0 e+00, 7.3 e+00, ...]])

Now, let's go to the transformers ...



Transformer: fit

• trf.statistics_ contains the imputation fill value (the 

mean) for each feature (column):

from sklearn.impute import SimpleImputer

trf = SimpleImputer(strategy='mean')

trf = trf.fit(X_train)

In [63]: X_train

Out[63]:

array([

[2.9 e-01, 0.0 e+00, 6.2 e+00, ...],

[5.0 e-02, nan, 6.0 e+00, ...],

[1.3 e+01, 0.0 e+00, 1.8 e+01, ...],

...,

[4.5 e-02, 0.0 e+00, 1.3 e+01, ...],

[5.2 e+00, 0.0 e+00, 1.8 e+01, ...],

[1.2 e+00, 0.0 e+00, 8.1 e+00, ...]])

trf.statistics_

Out[78]: 

array([3.2 e+00, 1.1 e+01, 1.0 e+01, ...])



Transformer: transform

X_train = trf.transform(X_train)

X_test = trf.transform(X_test)

array([[2.9 e-01, 0.0 e+00, 6.2 e+00, ...],

[5.0 e-02, 1.1 e+01, 6.0 e+00, ...],

[1.3 e+01, 0.0 e+00, 1.8 e+01, ...],

...,

[4.5 e-02, 0.0 e+00, 1.3 e+01, ...],

[5.2 e+00, 0.0 e+00, 1.8 e+01, ...],

[1.2 e+00, 0.0 e+00, 8.1 e+00, ...]])

In [63]: X_train

Out[63]:

array([[2.9 e-01, 0.0 e+00, 6.2 e+00, ...],

[ 5.0 e-02, nan, 6.0 e+00, ...],

[ 1.3 e+01, 0.0 e+00, 1.8 e+01, ...],

...,

[ 4.5 e-02, 0.0 e+00, 1.3 e+01, ...],

[ 5.2 e+00, 0.0 e+00, 1.8 e+01, ...],

[ 1.2 e+00, 0.0 e+00, 8.1 e+00, ...]])

X_train = trf.transform(X_train)

trf.statistics_

Out[78]: 

array([3.2 e+00, 1.1 e+01, 1.0 e+01, 6.7 e-02, 5.4 e-01, 6.3 e+00, 6.8 e+01, 3.8 e+00, 8.7 e+00, 3.8 e+02, 1.8 e+01, 3.6 e+02, 1.2 e+01])



Transformer: transform

• Notice that the same transformation is applied to 

train and test

array([

[9.2 e-02, 0.0 e+00, 2.5 +01, ...],

[2.5 e+01, 1.1 e+01, 1.8 e+01, ...],

[7.0 e+00, 0.0 e+00, 1.8 e+01, ...],

...,

[1.5 e+01, 0.0 e+00, 1.8 e+01, ...],

[2.0 e-01, 2.2 e+01, 5.8 e+00, ...],

[3.4 e-01, 0.0 e+00, 7.3 e+00, ...]])

In [64]: X_test

Out[64]:

array([

[9.2 e-02, 0.0 e+00, 2.5 e+01, ...],

[2.5 e+01, nan, 1.8 e+01, ...],

[7.0 e+00, 0.0 e+00, 1.8 e+01, ...],

...,

[1.5 e+01, 0.0 e+00, 1.8 e+01, ...],

[2.0 e-01, 2.2 e+01, 5.8 e+00, ...],

[3.4 e-01, 0.0 e+00, 7.3 e+00, ...]])

X_test = trf.transform(X_test)

trf.statistics_

Out[78]: 

array([3.2 e+00, 1.1 e+01, 1.0 e+01, 6.7 e-02, 5.4 e-01, 6.3 e+00, 6.8 e+01, 3.8 e+00, 8.7 e+00, 3.8 e+02, 1.8 e+01, 3.6 e+02, 1.2 e+01])



# Complete code

import numpy as np

from sklearn import datasets 

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

boston = datasets.load_boston()

X = boston.data

y = boston.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=33)

X_train[1, 1] = np.nan

X_test[1, 1] = np.nan

X_train

X_test

trf = SimpleImputer(strategy='mean')

trf = trf.fit(X_train)

trf.statistics_

X_train = trf.transform(X_train)

X_test = trf.transform(X_test)



Pipelines in Scikit Learn
• Let's put transfomers and class/regressors together: pipelines

• A sequence of transformers IS a transformer:

– transformer + transformer + ... + transformer ≡ transformer

– that means that it has the .fit and .transform methods

• A sequence of several transformers plus a classifier/regressor IS a 

classifier/regressor:

– transformer + transformer + ... + class/regr ≡ class/regr

– that means that it has the .fit and .predict methods

• All estimators in a pipeline except the last one, must be transformers

Transformer Transformer Class/Regr.

Transformer Transformer Transformer



A transformer pipeline:
trf=imputation + feature selection

import numpy as np

from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline

from sklearn.neighbors import KNeighborsRegressor

from sklearn.impute import SimpleImputer

from sklearn.feature_selection import SelectKBest, f_regression

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression, k=3)  

trf = Pipeline([

('impute', imputer),

('select', selector)])

trf is a sequence of transformers, therefore, trf IS a transformer (with .fit, and .transform 

methods).

impute select

trf

In sklearn, pipelines are lists of 

tuples ('stepname', step)



• We can fit the transformer pipeline and then 

access each step (tab completes the step names)

trf = trf.fit(X_train, y_train)    

trf.named_steps['impute']

trf.named_steps['select']

# The imputation step

In [36]: trf['impute']

Out[36]:

SimpleImputer(add_indicator=False, copy=True, 

fill_value=None,

missing_values=nan, strategy='mean', verbose=0)

# The feature selection step

In [37]: trf['select']

Out[37]: SelectKBest(k=3, score_func=<function 

f_regression at 0x0000018F017A3E58>)

trf['impute']

trf['select']

Shorter

trf[0]

trf[1]

or by integer position

impute select

trf

A transformer pipeline:
Accessing the individual steps

trf[0] trf[1]



trf.named_steps['impute'].statistics_

trf.named_steps['select'].get_support()

# The imputation step

In [126]: trf.named_steps['impute'].statistics_

Out[126]:

array([3.2 e+00, 1.1 e+01, 1.0 e+01, ...])

# The feature selection step

trf.named_steps['select'].get_support(True)

Out[128]: array([ 5, 10, 12], dtype=int64)

These values will be 

used for imputation

These attributes will 

be selected

A transformer pipeline:
Getting the properties of each individual steps



[[2.9 e-01   0.0 e+00  6.2 e+00 ...  1.7 e+01  3.7 e+02  3.9 e+00]

[5.0 e-02         nan    6.0 e+00 ...   1.6 e+01  3.9 e+02  1.2 e+01]

[1.3 e+01  0.0 e+00  1.8 e+01 ... 2.0 e+01  1.3 e+02  1.3 e+01]

...

[4.5 e-02   0.0 e+00  1.3 e+01 ... 1.6 e+01  3.9 e+02  1.3 e+01]

[5.2 e+00  0.0 e+00  1.8 e+01 ... 2.0 e+01  3.7 e+02  1.8 e+01]

[1.2 e+00  0.0 e+00  8.1 e+00 ... 2.1 e+01  3.7 e+02  2.1 e+01]]

[[ 7.68  17.4   3.92 ]

[ 5.70  16.9  12.43 ]

[ 3.86  20.2  13.33 ]

...

[ 5.88  16.4  13.51 ]

[ 6.05  20.2  18.76 ]

[ 5.57  21. 21.02 ]]

X_train = trf.transform(X_train) 

also X_test = trf.transform(X_test) 

Attributes 5, 10, 12 have been 

selected, and the np.nan have 

been imputed

A transformer pipeline:
applying the transformation



A classifier/regressor pipeline: 
transf + transf + ... + class/regr 

• clf.fit(X_train, y_train):

– impute.fit(X_train):

• averages are computed using the train partition 

only

– select.fit(X_train,y_train):

• features are selected using the train partition 

only.

– knn.fit(X_train,y_train):

• model is trained on the imputed and feature-

selected training data

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression, k=3)  

knn = KNeighborsRegressor()

clf = Pipeline([

('impute', imputer),

('select', selector),

('knn_regression', knn)])

clf = clf.fit(X_train, y_train)

y_test_pred = clf.predict(X_test)

impute select knn

clf



A classifier/regressor pipeline: 
transf + transf + ... + class/regr 

• clf.fit(X_train, y_train):

– impute.fit(X_train):

• averages are computed using the train partition 

only

– select.fit(X_train,y_train):

• features are selected using the train partition 

only.

– knn.fit(X_train,y_train):

• model is trained on training data

• clf.predict(X_test):

– impute.transform(X_test):

• averages computed previously are used for 

imputation

– select.transform(...):

• features chosen previously are selected

– knn.predict(...):

• predictions are computed

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression, k=3)  

knn = KNeighborsRegressor()

clf = Pipeline([

('impute', imputer),

('select', selector),

('knn_regression', knn)])

clf = clf.fit(X_train, y_train)

y_test_pred = clf.predict(X_test)

impute select knn

clf



Hyper-parameters of pipelines
• The hyper-parameters of a pipeline is the union of the 

hyper-parameters of each of the steps.

• The names of the hyper-parameters are: 

stepname__hyperparametername

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression)  

knn = KNeighborsRegressor()

clf = Pipeline([

('impute', imputer),

('select', selector),

('knn_regression', knn)])

select__k = how many features 

to select

knn_regression__n_neighbors = 

how many neighbors



Hyper-parameter tuning of 
pipelines

• Pipeline hyper-parameters can also be tuned
from sklearn.model_selection import GridSearchCV 

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression, k=3)  

knn = KNeighborsRegressor()

# Defining the pipeline

clf = Pipeline([

('impute', imputer),

('select', selector),

('knn_regression', knn)])



Hyper-parameter tuning of 
pipelines

• Pipeline hyper-parameters can also be tuned
from sklearn.model_selection import GridSearchCV 

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression, k=3)  

knn = KNeighborsRegressor()

# Defining the pipeline

clf = Pipeline([

('impute', imputer),

('select', selector),

('knn_regression', knn)])

# Defining hyper-parameter space

from sklearn.model_selection import GridSearchCV   

param_grid = {

'select__k': [2,3,4],

'knn_regression__n_neighbors': [1,3,5]

}    



Hyper-parameter tuning of 
pipelines

• Pipeline hyper-parameters can also be tuned
from sklearn.model_selection import GridSearchCV 

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression, k=3)  

knn = KNeighborsRegressor()

# Defining the pipeline

clf = Pipeline([

('impute', imputer),

('select', selector),

('knn_regression', knn)])

# Defining hyper-parameter space

from sklearn.model_selection import GridSearchCV   

param_grid = {

'select__k': [2,3,4],

'knn_regression__n_neighbors': [1,3,5]

}    

# Defining a 5-fold crossvalidation grid-search

clf_grid = GridSearchCV(clf, 

param_grid,

scoring=‘neg_mean_squared_error’,

cv=5 , n_jobs=1, verbose=1)

clf_grid = clf_grid.fit(X_train, y_train)

# The tuned method can be used for making predictions, 

just as any fit machine learning method

y_test_pred = clf_grid.predict(X_test)



Hyper-parameter tuning of 
pipelines

• Pipeline hyper-parameters can also be tuned
from sklearn.model_selection import GridSearchCV 

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression, k=3)  

knn = KNeighborsRegressor()

# Defining the pipeline

clf = Pipeline([

('impute', imputer),

('select', selector),

('knn_regression', knn)])

# Defining hyper-parameter space

from sklearn.model_selection import GridSearchCV   

param_grid = {

'select__k': [2,3,4],

'knn_regression__n_neighbors': [1,3,5]

}    

# Defining a 5-fold crossvalidation grid-search

clf_grid = GridSearchCV(clf, 

param_grid,

scoring=‘neg_mean_squared_error’,

cv=5 , n_jobs=1, verbose=1)

clf_grid = clf_grid.fit(X_train, y_train)

# The tuned method can be used for making predictions, 

just as any fit machine learning method

y_test_pred = clf_grid.predict(X_test)

# The best hyper-parameter values (and their scores) 

can be accessed

clf_grid.best_params_

Out[]: {'knn_regression__n_neighbors': 5, 'select__k': 

3}

clf_grid.best_score_

Out[]: -20.14685427728613



Hyper-parameter tuning of 
pipelines

• We can even get the optimized pipeline itself:

clf_grid.best_estimator_

Out[]: 

Pipeline(memory=None,

steps=[('impute',

SimpleImputer(add_indicator=False, copy=True, fill_value=None,

missing_values=nan, strategy='mean',

verbose=0)),

('select',

SelectKBest(k=3,

score_func=<function f_regression at 0x0000012D3D2FC798>)),

('knn_regression',

KNeighborsRegressor(algorithm='auto', leaf_size=30,

metric='minkowski', metric_params=None,

n_jobs=None, n_neighbors=5, p=2,

weights='uniform'))],

verbose=False)



Hyper-parameter tuning of 
pipelines

• Note: if needed, all pipeline hyper-parameters can 

be obtained with method .get_params()
clf.get_params()

'impute__add_indicator': False,

'impute__copy': True,

'impute__fill_value': None,

'impute__missing_values': nan,

'impute__strategy': 'mean',

'impute__verbose': 0,

'select__k': 10,

'select__score_func': <function sklearn.feature_selection.univariate_selection.f_regression(X, y, center=True)>,

'knn_regression__algorithm': 'auto',

'knn_regression__leaf_size': 30,

'knn_regression__metric': 'minkowski',

'knn_regression__metric_params': None,

'knn_regression__n_jobs': None,

'knn_regression__n_neighbors': 5,

'knn_regression__p': 2,

'knn_regression__weights': 'uniform'}



Hyper-parameter tuning of 
pipelines

• and they can also be set with .set_params, like this:
clf = clf.set_params(**{'knn_regression__n_neighbors':10})

clf.get_params()

'impute__add_indicator': False,

'impute__copy': True,

'impute__fill_value': None,

'impute__missing_values': nan,

'impute__strategy': 'mean',

'impute__verbose': 0,

'select__k': 10,

'select__score_func': <function sklearn.feature_selection.univariate_selection.f_regression(X, y, center=True)>,

'knn_regression__algorithm': 'auto',

'knn_regression__leaf_size': 30,

'knn_regression__metric': 'minkowski',

'knn_regression__metric_params': None,

'knn_regression__n_jobs': None,

'knn_regression__n_neighbors': 10,

'knn_regression__p': 2,

'knn_regression__weights': 'uniform'}



Caching steps in a pipeline

• For hyper-parameter tuning, some of the transformers in 

the pipeline should be fitted just once

• For example, ordering the features should be done only 

once (in principle, the same ordering of features is going to 

be obtained everytime).

• A cache can be used (however, notice that loading the 

cache from disk can be slow)

param_grid = {

'select__k': [2,3,4],

'knn_regression__n_neighbors': [1,3,5]

}    



Caching steps in a pipeline

from sklearn.model_selection import GridSearchCV 

from tempfile import mkdtemp

from shutil import rmtree

from joblib import Memory

imputer =  SimpleImputer(strategy='mean')

selector = SelectKBest(f_regression, k=3)  

knn = KNeighborsRegressor()

cachedir = mkdtemp()

memory = Memory(location=cachedir, verbose=10)

memory = Memory(verbose=10)

# Select is going to be cached

clf = Pipeline([

('impute', imputer),

('select', selector),

('knn_regression', knn)], 

memory = memory)

# Defining hyper-parameter space 

param_grid = {

'select__k': [2,3,4],

'knn_regression__k': [1,3,5]

}    

# Defining a 5-fold crossvalidation grid-search

clf_grid = GridSearchCV(clf, 

param_grid,

scoring=‘neg_mean_squared_error’,

cv=5 , n_jobs=1, verbose=1)

clf_grid = clf_grid.fit(X_train, y_train)

y_test_pred = clf_grid.predict(X_test)

# Delete the temporary cache before exiting

rmtree(cachedir)



• Let's suppose that we want to use both PCA feature 

extraction/reduction and standard feature selection.

• Feature Unions allow to define a step in the 

pipeline that combines features (attributes) 

obtained from two different sources.

Feature Unions

x1 x2 x3 x4 x5 x6 y
pca1 pca2 pca3 x2 x3 x6 y

º
Feature selection

PCA

Feature union



# Just importing modules and preparing the data

from sklearn.pipeline import Pipeline, FeatureUnion

from sklearn.model_selection import GridSearchCV

from sklearn.neighbors import KNeighborsRegressor

from sklearn.datasets import load_iris

from sklearn.decomposition import PCA

from sklearn.feature_selection import SelectKBest

from sklearn.model_selection import train_test_split

iris = load_iris()

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=33)

Feature Unions



# Now, we prepare the two sources of features/attributes: PCA and Feature Selection

# We compute two features from each

pca = PCA(n_components=2)

selection = SelectKBest(k=2)

# Build estimator from PCA and selection:

combined_features = FeatureUnion([("pca", pca), 

("select", selection)])

Feature Unions

pca

select

Data ...



# ...

# Build estimator from PCA and selection:

combined_features = FeatureUnion([("pca", pca), 

("select", selection)])

combined_features = combined_features.fit(X, y)

X_train_new = combined_features.transform(X_train)

X_test_new = combined_features.transform(X_test)

print("Combined space has", X_train_new.shape[1], "features")

Combined space has 4 features

Feature Unions
Feature Unions can be used as a standalone transformer. We fit it 

with the training data and use it to transform both training and test.

pca

select

Data ...



Feature Unions

... ...

Original dataset Transformed dataset

2 PCA's 2 selected features

pca

select

Data ...

selection = SelectKBest(k=2)

pca = PCA(n_components=2)



# ...

# Build estimator from PCA and selection:

combined_features = 

FeatureUnion([("pca", pca), 

("select", selection)])

knn = KNeighborsRegressor()

# Construct the pipeline of pca&select + knn

pca_sel_knn = 

Pipeline([("features", combined_features), 

("knn", knn)])

# Fit it

pca_sel_knn = pca_sel_knn.fit(X_train, y_train)

# And use it for making predictions for the train and test datasets

pred_train = pca_sel_knn.predict(X_train)

pred_test = pca_sel_knn.predict(X_test)

Feature Unions
Feature Unions can also be used as a transformer step in a pipeline.

pca

select

X_train knn

features

model

pca_sel_knn



pca_sel_knn['features'].transformer_list[0]

Out[]: ('pca',

PCA(copy=True, iterated_power='auto', n_components=2, 

random_state=None,

svd_solver='auto', tol=0.0, whiten=False))

pca_sel_knn['features'].transformer_list[1]

Out[]: ('select',

SelectKBest(k=2, score_func=<function f_classif at 

0x0000012D3D2F7EE8>))

pca_sel_knn['knn']

Out[]: KNeighborsRegressor(algorithm='auto', leaf_size=30, 

metric='minkowski',

metric_params=None, n_jobs=None, n_neighbors=5, p=2,

weights='uniform')

Feature Unions
We can still Access each one of the steps in the pipeline

pca

select

knn

features

[0]

[1]



X_train_transformed = pca_sel_knn['features'].transform(X_train)

print(X_train_transformed[:5,:])

Out[]: 

[[-0.0 -0.2   3.6   1.3 ]

[ 2.0    0.0   5.5   1.8 ]

[-2.1    0.7   1.7   0.4 ]

[ 1.3    0.6   4.7   1.4 ]

[ 1.6   -0.5   5.1   2.4 ]]

X_train_transformed = 

pca_sel_knn['features'].transformer_list[0][1].transform(X_train)

print(X_train_transformed[:5,:])

Out[]: [[-0.0 -0.2]

[ 2.0 0.0]

[-2.1 0.7]

[ 1.3 0.6]

[ 1.6 -0.5]]

Feature Unions
... and use the individual steps to transform data!

pca

select

knn

features

[0]

[1]



• Create a FeatureUnion that selects the first more relevant attribute according to 

three ranking methods: 

– f_classif

– mutual_info_classif

– chi2

• First, use it as standalone transformer and check that it works (that when used to 

transform a dataset (X_test, for instance), three features are created).

• And then use it into a pipeline together with knn. Fit the pipeline, and check that 

the three features are being created. You will need to access the FeatureUnion 

step in the pipeline and use it to transform a dataset (X_test, for instance), and 

see that three features are created.

• This transformer is not very useful, as the three methods will usually select the 

same attribute. Just for practising.

Feature Unions: exercise



Feature Unions: exercise
from sklearn.pipeline import Pipeline, FeatureUnion

from sklearn.neighbors import KNeighborsRegressor

from sklearn.datasets import load_iris

from sklearn.feature_selection import SelectKBest, f_classif, 

mutual_info_classif, chi2

from sklearn.model_selection import train_test_split

iris = load_iris()

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, 

random_state=33)

first_selector = SelectKBest(score_func=f_classif, k=1)

second_selector =  SelectKBest(score_func=mutual_info_classif, k=1)

third_selector = SelectKBest(score_func=chi2, k=1)

...



Feature Unions: exercise
...

# Combine the three features:

combined_features = FeatureUnion([("f1",     first_selector), 

("f2", second_selector),

("f3", third_selector)])

# Here, we use combined_features as a standalone transformer

combined_features = combined_features.fit(X_train, y_train)

new_X_test = combined_features.transform(X_test)

# We see that three features have been created

new_X_test[:5,:]

Out[]: 

array([[4.2, 1.3, 4.2],

[4.4, 1.4, 4.4],

[1.6, 0.2, 1.6],

[4.6, 1.5, 4.6],

[5.6, 1.4, 5.6]])



Feature Unions: exercise
...

# Combine the three features:

combined_features = FeatureUnion([("f1",     first_selector), 

("f2", second_selector),

("f3", third_selector)])

knn = KNeighborsRegressor()

# Construct the pipeline 

f1f2f3_knn = Pipeline([("features", combined_features), 

("knn", knn)])

# Fit it

f1f2f3_knn = f1f2f3_knn.fit(X_train, y_train)

# We access to the 'features' step of the trained pipeline and use it to transform the test set

new_X_test = f1f2f3_knn['features'].transform(X_test)

# We see that the new data matrix has three features

print(new_X_test[:5,:])

Out[]: 

array([[4.2, 1.3, 4.2],

[4.4, 1.4, 4.4],

[1.6, 0.2, 1.6],

[4.6, 1.5, 4.6],

[5.6, 1.4, 5.6]])



• Up to now, all pre-processing steps process all attributes in the 

dataset

• But in some cases, different attributes/features need to follow 

different pre-processing steps.

• For instance, categorical attributes should undergo some pre-

processing and numerical attributes some other pre-processing.

• ColumnTransformer can be used for that

• Important: all pre-processing steps in a pipeline transform numpy 

arrays into numpy arrays, but ColumnTransformer can start from 

Pandas dataframes (and transform them into numpy arrays)

Transforming individual features



• Let's suppose that we start with the titanic 

dataset which is a Pandas dataframe

Transforming individual features

NumericalCategorical

y



Transforming individual features
• Each attribute or each type of attribute (numeric, categorical, ...) can be 

transformed in a different way

– https://scikit-learn.org/stable/modules/compose.html#pipeline

imputer scaler

classifier

num

imputer onehot

cat

median

constant

preprocessor

clf

age 

fare

embarked

sex

pclass



Transforming individual features

preprocessor__num__imputer__strategy

Hyper-parameters can be accessed with 

the usual __ notation:

and they can be set with:

clf.set_params(**{'preprocessor__num__imputer__strategy': 'mean'})



• Trained pipelines can be saved into a file in pickle 

format, to be used later

• Caution! if the version of sklearn changes, or a 

different architecture is used (e.g. saving in Windows10 

and loading in Linux), this would lead to unexpected 

results

Pipeline persistence

from joblib import dump, load

dump(pca_sel_knn, 'pca_sel_knn.joblib') 

pca_sel_knn = load('pca_sel_knn.joblib') 



• There are cases where you want to do some 

pre-processing, but sklearn does not provide 

that operation to be included in your pipeline.

• If the pre-processing is done with a Python 

function, that function can be used as a 

transformer

Function transformers



• Let's suppose a very simple case, where we want a 

transformer that removes the first column 

(because, for instance, we know it is an identifier, 

useless for prediction).

• This is a function that removes the first column (0) 

of a numpy dataframe

Function transformers

def drop_first_column(X): 

return X[:, 1:] 



• And this is the way to use it as a step in a pipeline:

Function transformers

def drop_first_column(X): 

return X[:, 1:] 

from sklearn.preprocessing import FunctionTransformer

knn = KNeighborsRegressor()

remove_column_1 = FunctionTransformer(drop_first_column)

pipe = Pipeline([

('drop_col_1', remove_column_1),

('knn', knn)

])

from sklearn.preprocessing import FunctionTransformer

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html#sklearn.preprocessing.FunctionTransformer


• There are cases where you want to do some pre-

processing, but sklearn does not provide that 

operation to be included in your pipeline.

• And functionTransformer cannot be used.

• But you can extend sklearn by creating your own 

new pre-processing steps.

• We are going to program a transformer for "getting 

just the first colum" (although this is so simple that 

it could also be achieved via 

FunctionTransformer). 

Creating new transformers for 
pipelines



• Get the first attribute/column of the input attributes

• We asume that the data matrix is a numpy matrix

• Two methods have to be defined: fit and transform

A simple (not very useful) transformer

class get_one_col(TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

return(self)

def transform(self, X):

return(X[:,[0]])



• Before, going deeper into the definition of 

our new transformer, let's see how it would 

be used in practice.

A simple transformer
(selecting first column)



• Let's try it

• We first import 

some modules and 

define my 

transformer

from sklearn.datasets import load_iris

from sklearn.pipeline import Pipeline

from sklearn.neighbors import KNeighborsRegressor

from sklearn.base import TransformerMixin

iris = load_iris()

X, y = iris.data, iris.target

class get_one_col (TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

return(self)

def transform(self, X):

return(X[:,[0]])

A simple transformer
(selecting first column)



• Now, my transformer is 

initialized

• and then fitted one_col_trans = get_one_col ()

one_col_trans.fit(X,y)

A simple transformer
(selecting first column)



• and now, we apply the 

transformer

• We see that the first 

column was selected, as 

expected

# X before transformation

print(X[:3,:])

[[5.1 3.5 1.4 0.2]

[4.9 3.  1.4 0.2]

[4.7 3.2 1.3 0.2]]

# X after transformation

XX = one_col_trans.transform(X)

print(XX[:10,:])

[[5.1]

[4.9]

[4.7]]

A simple transformer
(selecting first column)



class get_one_col(TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

return(self)

def transform(self, X):

return(X[:,[0]])

This is the name of 

your transformer

This is to specify that you 

want to define a new 

transformer

This is to specify what to 

do when creating the 

transformer (in this case, 

we do nothing: pass)

self is the transformer 

itself

This is how we create our new transformer: 

one_col_trans = get_one_col ()

A simple transformer
(selecting first column)



class get_one_col(TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

return(self)

def transform(self, X):

return(X[:,[0]])

• fit is the operation that trains 

the transformer.

• This particular transformer 

always selects column 0, 

independently of the training 

data.

• Therefore, .fit just returns the 

transformer (self) without 

changing it. That is, .fit does 

nothing.

.transform is the operation 

that transforms the data. In 

this case, we just select 

column 0

A simple transformer
(selecting first column)



• Let's try it

• We first import 

some modules and 

define my 

transformer

from sklearn.datasets import load_iris

from sklearn.pipeline import Pipeline

from sklearn.neighbors import KNeighborsRegressor

from sklearn.base import TransformerMixin

iris = load_iris()

X, y = iris.data, iris.target

class get_one_col (TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

return(self)

def transform(self, X):

return(X[:,[0]])

A simple transformer
(selecting first column)



• Now, my transformer is 

initialized

• and then fitted

• In this simple case, 

fitting does nothing

one_col_trans = get_one_col ()

one_col_trans.fit(X,y)

class get_one_col (TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

return(self)

def transform(self, X):

return(X[:,[0]])

A simple transformer
(selecting first column)



• And now, we apply the 

transformer

• We see that the first 

column was selected, as 

expected

# X before transformation

print(X[:3,:])

[[5.1 3.5 1.4 0.2]

[4.9 3.  1.4 0.2]

[4.7 3.2 1.3 0.2]]

# X after transformation

XX = one_col_trans.transform(X)

print(XX[:10,:])

[[5.1]

[4.9]

[4.7]]

A simple transformer
(selecting first column)



• Our simple transformer 

can be used a step in a 

pipeline

Using our transformer in a pipeline

one_col_trans = get_one_col()

knn = KNeighborsRegressor()

pipe = Pipeline([

('one_col', one_col_trans),

('knn', knn)

])

# Our pipeline is trained and knn is trained

# with just the first column (because that is

# what our transformer does)

pipe = pipe.fit(X,y)



• Program a transformer that returns a single 

column, which is the summation of all the input 

columns.

• You can sum all columns by using:

np.sum(X, axis=1, keepdims=True)

• That means that we add all the elements column-

wise

• Check that it works as a standalone transformer

A new transformer: exercise



• Program a transformer that returns a 

single column, which is the summation 

of all the input columns.

• You can do that by using:

np.sum(X, axis=1, keepdims=True)

• That means that we add all the 

elements column-wise

• keepdims=True is needed so that the 

final result is a matrix with one 

column, and not a vector (a vector is 

not a matrix).

A new transformer: exercise

X[:5,:]

Out[]: 

array([[5.1, 3.5, 1.4, 0.2],

[4.9, 3. , 1.4, 0.2],

[4.7, 3.2, 1.3, 0.2],

[4.6, 3.1, 1.5, 0.2],

[5. , 3.6, 1.4, 0.2]])

XX=np.sum(X, axis=1, keepdims=True)

XX[:5,:]

Out[60]: 

array([[10.2],

[ 9.5],

[ 9.4],

[ 9.4],

[10.2]])



from sklearn.datasets import load_iris

from sklearn.pipeline import Pipeline

from sklearn.neighbors import KNeighborsRegressor

from sklearn.base import TransformerMixin

import numpy as np

iris = load_iris()

X, y = iris.data, iris.target

class get_one_col (TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

return(self)

def transform(self, X):

return(<PUT CODE HERE>)

A new transformer: exercise



from sklearn.datasets import load_iris

from sklearn.pipeline import Pipeline

from sklearn.neighbors import KNeighborsRegressor

from sklearn.base import TransformerMixin

from sklearn.model_selection import train_test_split

import numpy as np

iris = load_iris()

X, y = iris.data, iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=33)

class get_one_col(TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

return(self)

def transform(self, X):

return(np.sum(X, axis=1, keepdims=True))

A new transformer: exercise



# Checking that it Works as a standalone transformer

# First, we initialize the transformer

one_col = get_one_col()

# Then, we fit it with the training data

one_col = one_col.fit(X_train,y_train)

# Finally, we use it to transform X

new_X_test = one_col.transform(X_test)

new_X_test[:5,:]

Out[]: 

array([[14.1],

[15.6],

[ 9.7],

[15.4],

[15.7]])

A new transformer: exercise



• This one is going to do imputation of numerical 

attributes, but using the first quartile instead of the 

median or the mean:

A more complicated transformer

from sklearn.base import TransformerMixin

import numpy as np

class SimpleImputerQuartile(TransformerMixin):

def __init__(self):

pass

def fit(self, X, y=None):

# nanquantile computes quantiles, while ignoring nan

self.statistics_ = np.nanquantile(X, 0.25, axis = 0)

return(self)

def transform(self, X):

for j in range(X.shape[1]):

for i in range(X.shape[0]):

if(np.isnan(X[i,j])):

X[i,j]=self.statistics_[j]

return(X)

In this case, fitting the 

transformer puts some 

information inside the 

transformer (self)



• Let's analyze the .fit method

A more complicated transformer

def fit(self, X, y=None):

self.statistics_ = np.nanquantile(X, 0.25, axis = 0)

return(self)

print(X[:5,:])

[[nan 3.5 1.4 0.2]

[4.9 nan 1.4 0.2]

[4.7 3.2 nan 0.2]

[4.6 3.1 1.5 nan]

[5.  3.6 1.4 0.2]]

input X

np.nanquantile(X, 0.25, axis = 0)

Out[]: array([5.1, 2.8, 1.6, 0.3])

np.nanquantile returns the 1/4 quantile (first quartile)



• This show what it is meant by .fit putting some 

information inside the transformer (self)

A more complicated transformer

def fit(self, X, y=None):

self.statistics_ = np.nanquantile(X, 0.25, axis = 0)

return(self)

# Here, we create the transformer

my_quartile_imputer = SimpleImputerQuartile()

# And then, we train it

my_quartile_imputer = my_quartile_imputer.fit(X,y)

# And once trained, there is information inside the transformer

print(my_quartile_imputer.statistics_)

Out[]: array([5.1, 2.8, 1.6, 0.3])



• Let's analyze the .transform method

• It goes through all the columns (j) of X and 

then through all the rows (i) of column j

• If X[i,j] is np.nan, then it is replaced by the 

first quartile of column j, which is contained 

in self.statistics_[j]

A more complicated transformer

def transform(self, X):

for j in range(X.shape[1]):

for i in range(X.shape[0]):

if(np.isnan(X[i,j])):

X[i,j]=self.statistics_[j]

return(X)



• Let's analyze the .transform method

A more complicated transformer

def transform(self, X):

for j in range(X.shape[1]):

for i in range(X.shape[0]):

if(np.isnan(X[i,j])):

X[i,j]=self.statistics_[j]

return(X)

print(X[:5,:])

[[nan 3.5 1.4 0.2]

[4.9 nan 1.4 0.2]

[4.7 3.2 nan 0.2]

[4.6 3.1 1.5 nan]

[5.  3.6 1.4 0.2]]

input X

my_quartile_imputer = SimpleImputerQuartile()

my_quartile_imputer = my_quartile_imputer.fit(X,y)

print(my_quartile_imputer.statistics_)

[5.1 2.8 1.6 0.3]

XX = my_quartile_imputer.transform(X)

print(XX[:5,:])

[[5.1 3.5 1.4 0.2]

[4.9 2.8 1.4 0.2]

[4.7 3.2 1.6 0.2]

[4.6 3.1 1.5 0.3]

[5.  3.6 1.4 0.2]]



• We can also use our SimpleImputerQuartile in a 

pipeline: 

A more complicated transformer

quartile_imputer = SimpleImputerQuartile()

knn = KNeighborsRegressor()

qi_knn = Pipeline([

('quartile_imputer', quartile_imputer),

('knn', knn)

])

pipe = qi_knn.fit(X,y)


