

OPENCOURSEWARE

ADVANCED PROGRAMMING

STATISTICS FOR DATA SCIENCE

Ricardo Aler

MASTER IN STATISTICS FOR DATA SCIENCE. UC3M.

ADVANCED PROGRAMMING

2 HOURS

1. What is the expected result of this piece of code?

x=range(3)

y=x.append([4])

2. What would be printed by this piece of code?

x = [1, 2, '3']

y = x

y[0:1]=x[1:2]

print(x)

3. If data is a Pandas dataframe with a column named ‘cn’, would the following three

options produce the same result? Why?

column_name = ’cn’

data[column_name] = 3 # option 1

data.column_name = 3 # option 2

data.loc[column_name] = 3 # option 3

4. What is the name of the Python concept that allows to do an operation like this:

np.array([1,2,3])+0

5. In order to do automatic hyper-parameter tuning, it is necessary to define several

elements. Describe all those elements

6. What would be printed by this piece of code?

data = pd.DataFrame({'a': [1,2,3,4,5,6], 'b':[4,5,6,7,8,9]})

print(data.loc[3:5,'a'])

7. What would be the result of the following code?

mydictionary = {}

mydictionary[[1,2]] = 0

print(mydictionary)

8. What would be the contents of variable result after executing this piece of code? Why?

import numpy as np

result = np.array([1,2,3]+[4,4,4])+6

9. What would be the contents of variable result after executing this code?

result = 'abcdef'[5:1:-1]

10. Write two short pieces of code that do the same thing, but the first one uses a list,

while the second one uses a tuple. The one for the list should work, the one for the

tuple should be expected to raise an error.

11. What follows is the code for defining a new transformer step for pipelines. Modify this

code so that the transformer apparently does the same thing, but now with data-

leakage. Explain why data-leakage is happening in your new code:

class f(TransformerMixin):

 def __init__(self):

 pass

 def fit(self, X, y=None):

 self.sum_ = np.nansum(X)

 return(self)

 def transform(self, X):

 for j in range(X.shape[0]):

 for i in range(X.shape[1]):

 if(np.isnan(X[i,j])):

 X[i,j]=self.sum_

 return(X)

12. Stan returns posterior distributions. How does Stan represent them?

13. What is the main difference between sort and sorted?

14. Why does Stan has a warmup period?

15. Write a piece of code that does the same thing than the one below, but it is much

shorter:

mylist = [0,2,4,6]

result = []

for elem in mylist:

 result.append(elem+1)

print(result)

