
Module 3: Analysis of AC circuits

Belén Garćıa
Electrical Engineering Department

In this module the main concepts of Alternating Current (AC) circuits are introduced.
The analysis of circuits in the frequency domain is presented and systematic methods for
circuit analysis are applied to the solution of AC circuits. The last part of the module
brings in some concepts about the exchange of power in AC circuits.

1 Introduction to AC systems

Most power systems nowadays are based in AC circuits. In these circuits the generators
supply voltages and currents that are not constant but vary in time as sinusoidal functions.

The widespread use of AC systems is related with the fact that the transport of energy
is more efficient if it is carried out at a higher voltage level. To illustrate this aspect, a case
is analysed below in which a certain amount of power p is transferred from a generator to
a load. The energy is transported with a transmission line of resistance RTL.
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The line losses depend on the current that flows through the line. Then, if the power
required by the load is:

pload = u · i (1)

the line losses are:

ploss = RTL · i2 (2)
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If the voltage of the system is raised up, and the energy is transported at a higher
voltage level, the current required to transport the same amount of power cuts down by
the same rate and and the line losses cuts down by a rate which is the square of the voltage
reduction (i.e. if the voltage is multiplied by 10, the current flow to transfer the power p
is divided by 10, and the power losses at the lines are divided by 100).

In order to change the voltage level of the energy that is transferred from the generators
to the consumers distribution and power transformers are used. These machines
are constituted by two coupled inductors (the primary and secondary windings) with
different numbers of turns. As was studied in Module 1, the self inductance and the
mutual inductance effects only take place when the current flowing through the inductors
vary with time. This implies that transformers can only be applied in AC systems.
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The following diagram shows the typical configuration of a power system. The voltage
level of the generated energy is increased with a step-up transformer (T1 in the dia-
gram). The transport of energy is carried out at high voltage, so that the current required
to transfer the power demanded by the loads is lower (p = u · i) and so, the losses and the
voltage drop at the transmission lines are minimized. Later, the voltage level is decreased
at the consumption points by means of a step-down transformer (T2 in the diagram).
Finally, the energy is supplied to the loads at the required voltage level.
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2 Characteristics of a sinusoidal function

2.1 Sources in AC circuits

In DC circuits voltages and currents do not change in time; the instantaneous voltages
and currents are constant:

u(t) = ug i(t) = ig (3)
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In AC circuits the voltages and currents supplied by voltage and current sources are
not constant but are defined by sinusoidal functions. This means that the electric variables
change over time.

The following diagram shows the typical variation of the voltages and currents in DC
and AC voltage and current sources and the symbols that represent these elements:
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In AC circuits voltages are currents are defined by sinusoidal functions of the following
type:

u(t) = Umax · cos(ωt+ ϕu) i(t) = Imax · cos(ωt+ ϕi) (4)

The sinusoidal functions might also be defined in terms of a function sine, applying
the relationship between the sine and cosine functions:

sinα = cos(α− π/2) (5)

When we analyse an AC circuit all the currents and voltages must be represented
either as sine or as cosine functions. Both options are valid but a consistent criteria must
be adopted. The same type of function must be considered when comparing or making
operations with more than two signals (i.e. when summing or subtracting two voltages or
currents). In this notes we will always use the cosine function to define electric
signals.

2.2 Main parameters of a sinusoidal signal

Typically AC voltages are defined as:

u(t) = Umax · cos(ωt+ ϕu) (6)
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It is interesting to plot the previous sinusoidal function and characterize its main
parameters.
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The main parameters of a sinusoidal function are:

• Amplitude (Umax), also referred to as ”Peak voltage” and ”Maximum voltage”.
It is the maximum value reached by the function.

• Period (T): Time needed to complete a cycle (from one maximum to the next one).
It is measured in seconds.

• Frequency (f): Number of cycles described in one second. It is measured in Hertz
(i.e. cycles per second)

f =
1

T
[Hz] (7)

• Angular frequency (ω): Frequency of the function in radians per second.

ω = 2 · π · f [rad] · [s]−1 (8)

• Phase angle (ϕ): is the phase difference between the maximum of the function and
the origin. According to the units of ω and t we see that the phase angle must be
expressed in radians. However, for practical reasons, it is very common to express
it in degrees. This is not correct from the dimensions prospective but simplifies
the analysis in many cases. In this notes the phase angle will be sometimes
expressed in degrees.

• Mean value: The mean value of a sinusoidal function equals zero

Umean =
1

T

∫ t0+T

t0

u(t)dt =
1

T

∫ t0+T

t0

Umax · cos(ωt+ ϕu)dt = 0 (9)

• Root mean square value (rms) or effective value:

Urms =

√
1

T

∫ t0+T

t0

u2(t)dt (10)

Considering that the voltage varies as a cosine function, we can find a relation
between the amplitude and the rms value:
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Urms =

√
1

T

∫ t0+T

t0

U2
max · cos2(ωt+ ϕu)dt =

Umax√
2

(11)

The rms value of the sinusoidal signals is an important parameter and it will be
very common to express those functions in terms of rms instead of peak values. To
simplify the notation we will denote the rms value of a voltage or current just with
the letter u or i in capital letters without any subscripts:

U = Urms =
Umax√

2
I = Irms =

Imax√
2

(12)

And we will commonly express the AC voltages and currents as:

u(t) =
√

2 · U · cos(ωt+ ϕu) i(t) =
√

2 · I · cos(ωt+ ϕi) (13)

2.3 Relative phase shift

Another important parameter is the relative phase shift between different sinusoidal
functions.

The phase shift between two signals is the distance between their zero crossings or
their peaks. For example, if the sinusoidal voltage and a sinusoidal current provided as
(14) are plotted vs. time, a certain shift between the maximums and zero crossings of
both variables is observed:

u(t) =
√

2 · U · cos(ωt+ ϕu) i(t) =
√

2 · I · cos(ωt+ ϕi) (14)
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The phase shift can be quantified as:

∆ϕu,i = ϕu − ϕi (15)

In the example shown in the diagram ϕu < ϕi and then ∆ϕu,i < 0. In this case we say
that voltage lags current and current leads voltage.

If, on the contrary, ∆ϕu,i was positive the voltage would lead the current.

The following diagram summarizes the different situations that can be found regarding
the phase shift between two signals:
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3 Analysis of AC circuits in the time domain

The following sections tackle the methods that can be used to perform the analysis of AC
circuits. An initial approach could consist on the application of the methods that were
learnt for the analysis of DC circuits to AC circuits. In this case we would face two main
challenges:

1. Operating with sinusoidal functions is not easy. Even doing basic calculations, such
as adding two sinusoidal functions, would entail some difficulty.

Imagine that we want to sum the to currents i1 and i2 to find the current i3 applying
Kirchhoff current law:

i1+i2=i3
i1 i2

i3

i1 =
√

2 · I · cos(ωt+ ϕi1) i2 =
√

2 · I · cos(ωt+ ϕi2) (16)

i3 =
√

2 · I1 · cos(ωt+ ϕi1) +
√

2 · I2 · cos(ωt+ ϕi2) =
√

2 · I3 · cos(ωt+ ϕi3) (17)

Finding the values I3 and ϕi3 from the parameters of i1 and i2 is not immediate and
requires complex math analysis.

2. The analysis of AC circuits involves the solution of differential equations or differ-
ential systems of equations what complicates the calculations significantly.

Imagine that we want to analyse the following circuit to find the current i(t) that
flows though the three series-connected elements:
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The voltage of the source is:

ug(t) =
√

2 · U · cos(ωt+ ϕu) (18)

Then, according to 2KL:

ug(t) = uR(t) + uL(t) + uC(t) (19)

The relationships between voltage and current in resistors, inductors and capacitors
are:

uR(t) = R · i(t) uL(t) = L · di(t)
dt

uC(t) =
1

C
·
∫
i(t)dt (20)

Then, replacing (20) in (19):

ug(t) = R · i(t) + L · di(t)
dt

+
1

C
·
∫
i(t)dt (21)

and applying derivatives to (21) we get a differential equation that relates i(t) with
ug, R, L and C:

dug(t)

dt
= R · di(t)

dt
+ L · d

2i(t)

dt2
+

1

C
· i(t) (22)

To find the current i(t) we have to solve the previous second-order differential equa-
tion.

The solution of the differential equation (22) is made up of the sum of two terms: the
transient current (it), which represents the behaviour of the system after a change
(i.e, a connection or disconnection of a source, a change on the voltage level..),
and the steady state current (iss) which represents the behaviour of the system in
permanent regime.

i(t) = it + iss (23)

Taking into account concepts of differential-equations solution, we can state that
if the excitation to the system is a sinusoidal function of frequency ω,
the steady-state current will also be a sinusoidal function of the same
frequency.
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ug(t) =
√

2 · U · cos(ωt+ ϕu) => iss(t) =
√

2 · I · cos(ωt+ ϕi) (24)

Since this course is focused in the analysis of the steady state performance of electric
circuits, for us, the solution to the problem would be:

i(t) =
√

2 · I · cos(ωt+ ϕi) (25)

Finding the parameters I and ϕi that define the instantaneous current would require
solving the differential equation (22).

Some conclusions can be extracted by the previous analysis:

• The analysis of AC circuits involves the solution of differential equations or sys-
tems of equations. For simple circuits the resulting equations are not complex
but in circuits with more elements (i.e. circuits with several mesh) finding and
a solution may be challenging.

• If the excitation of a circuit is a sinusoidal voltage or current of frequency ω,
the responses (i.e. all the resulting currents and voltages) are also sinusoidal
functions of the same frequency ω.

• Our goal is to find the amplitudes and phase shifts of the responses.

In further sections we will introduce the analysis of AC circuits in the frequency do-
main. This tool is based in the representation of sinusoidal functions by means of complex
numbers and simplifies the analysis of AC circuits greatly. Before introducing the method
a short review of complex algebra is provided.

4 Complex numbers: a short review

The irrational number ”i” is defined as the square root of -1. In circuit analysis the letter
i is used for the variable ”current”; to avoid confusion ”j” is commonly used to denote the
square root of -1:

j =
√
−1 (26)

A complex number can be expressed as the sum of a real part, a, and an imaginary
part, b:

z = a+ bj (27)

The former representation of complex numbers is the so-called rectangular form.

Sometimes it is useful to represent complex numbers as vectors in the complex
plane, in which the x axis corresponds to the real parts and the y axis to the imaginary
parts:
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As can be derived from the previous diagram the complex number z can be also ex-
pressed in polar form:

z = |z|∠θ (28)

being:

|z| =
√
a2 + b2 θ = arctan

b

a
(29)

If we want to transform a complex number expressed in polar form into rectangular
form we use:

a = |z| · cos θ b = |z| · sin θ (30)

Additionally, complex numbers may be expressed in the so-called exponential form:

z = |z| · ejθ (31)

Euler’s equation provides the relationship between the trigonometric functions and
the complex exponential function:

e±jθ = cos θ ± j sin θ (32)

5 Phasor representation of a sinusoidal function

5.1 Definition of phasor

In AC systems the instantaneous values of voltages and currents are defined by cosine
functions. Euler’s equation (32) provides a relation between sinusoidal and exponential
functions; its application allows us to express the instantaneous values of voltages and
currents in AC as the real part of an exponential function. Then, an AC voltage of
frequency ω, rms value U and phase angle ϕu might be expressed as:

u(t) =
√

2 · U · cos(ωt+ ϕu) =
√

2 · U ·Re(ej(ωt+ϕu)) (33)

As the rms value is always a real number, equation (33) may be rearranged as:

u(t) =
√

2 ·Re(U · ejϕu · ejωt) (34)
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According to the analysis provided in section 3, all the voltages and currents of a circuit
excited with AC sources of frequency ω, are sinusoidal functions of the same the frequency
ω. The unknown information is the rms value of those signals and their phase angle 1.

The phasor representation of a sinusoidal signal is defined as a complex number
that contains the information on the rms value and the phase angle of the sinusoidal
function. Phasors represents sinusoidal functions in the frequency domain:

Im

Re

U
�u�t

u

Time domain Frequency domain

Uu(t)

Instantaneous voltage: Phasor voltage:

u(t) =
√

2 ·Re(U · ejϕu · ejωt) U = U · ejϕu = U∠ϕu

In these notes the phasors will be written with capital lettters, underlined and in bold
text (U I). Other references use different notations, as cursive letters, bold text or other
symbols (U I, U I, Û Î, U I...).

The mathematical relationship between the sinusoidal function u(t) and the phasor U
is:

u(t) =
√

2 ·Re(U · ejωt) (35)

5.2 Kirchhoff’s laws in phasor form

One of the important facts about phasor representation is that Kirchoff laws, which are
the basis for circuit analysis, are still valid when they are expressed in terms of the phasors
that represent the sinusoidal voltages or currents.

5.2.1 Kirchhoff’s current law

Kirchhoff’s current law (KCL) establishes that the algebraic sum of the currents flowing
into a node equals zero:

n∑
k=1

ik(t) = 0 => i1(t) + i2(t) + ....+ in(t) = 0 (36)

If KCL is applied to an AC circuit, the currents in equation (36) are sinusoidal functions
which can be expressed as a function of their phasors:

1There is an exception to this statement which is the response of a circuit to sources of different
frequency acting simultaneously. That case will be study in a further section
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ik(t) =
√

2 · Ik · cos(ωt+ ϕi,k) =
√

2 ·Re(Ik · ejωt) (37)

where the phasor Ik is:

Ik = Ik∠ϕi,k (38)

Replacing (37) into (36):

√
2 ·Re(I1 · ejωt) +

√
2 ·Re(I2 · ejωt) + ...+

√
2 ·Re(In · ejωt) = 0 (39)

simplifying and rearranging:

Re(I1 · ejωt + I2 · ejωt + ...+ In · ejωt) = 0 (40)

getting common factor:

Re((I1 ·+I2 ·+...+ In) · ejωt) = 0 (41)

As we know that ejωt 6= 0, we can state that the algebraic sum of the phasor
representation of the currents that flow into the node equals zero, what means
that KCL is also valid in terms of the phasors current.

I1 + I2 + ...+ In = 0 =>
∑
k

Ik = 0 (42)

5.2.2 Kirchhoff’s voltage law

Kirchhoff’s voltage law (KVL) stablishes that the algebraic sum of the voltages across a
closed path of a circuit equals zero:

∑
k

uk = 0 (43)

For AC circuits the voltages are defined by sinusoidal functions that can be expressed
as a function of their phasor representations:

uk(t) =
√

2 · Uk · cos(ωt+ ϕu,k) =
√

2 ·Re(Uk · ejωt) (44)

where:

Uk = Uk∠ϕu,k (45)

Then, if we apply Kirchoff’s voltage law to a closed path of a circuit that contains n
elements with sinusoidal voltage drops across them, we come to the following equation:
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n∑
k=1

uk(t) = 0 => u1(t) + u2(t) + ....+ un(t) = 0 (46)

Replacing (44) into (46):

√
2 ·Re(U1 · ejωt) +

√
2 ·Re(U2 · ejωt) + ...+

√
2 ·Re(Un · ejωt) = 0 (47)

Following the same reasoning that was used to obtain KCL law in phasor form, we find
that the algebraic sum of the phasor representations of the voltages across a
closed path of a circuit equals zero, what means that KVL might be also expressed
in terms of the phasors voltage:

U1 + U2 + ...+ Un = 0 =>
∑
k

Uk = 0 (48)

5.3 Example

Calculate i3(t) given that:

i1(t) =
√

2 · 10 · cos(25t+ 45o)A i2(t) =
√

2 · 20 · cos(25t+ 90o)A

i1(t) i2(t)

i3(t)

Solution

Although KCL might be applied to the calculation of the calculation of current i3,
we would need to find the sum of two sinusoidal functions to obtain the amplitude and
phase-angle of i3(t):

i3(t) = i1(t) + i2(t) =
√

2 · 10 · cos(25t+ 45o) +
√

2 · 20 · cos(25t+ 90o)

As an alternative, the calculation might be done in the frequency domain:

1. We obtain the phasors that represent currents i1(t) and i2(t):

I1 = 10∠45oA = 7.07 + 7.07jA

I2 = 20∠90oA = 20jA

2. We apply KCL in phasor form to find phasor I3:

I3 = I1 + I2
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I3 = 10∠45o + 20∠90o = 7.07 + 27.07j = 28∠75.36oA

3. Finally, we go back to the time domain and calculate i3(t)

i3(t) =
√

2 · 28 · cos(25t+ 75.36o)A

6 Complex impedance

6.1 Definition

As was explained before, the use of phasors allows us operating with sinusoidal functions
in an effective and simple way.

The other difficulty involved in the analysis of AC circuits is the fact that, for capacitors
and inductors, the relationships between voltages and currents are given by differential
equations, which are more difficult to handle than the linear equations that relate voltages
and currents in resistors.

uL(t) = L · diL(t)

dt
iC(t) = C · duC(t)

dt
uR(t) = R · iR(t) (49)

To avoid the need of solving differential equations in the analysis of AC circuits, a new
variable is introduced that relates the phasors voltage and current of passive elements with
a linear relation.

The impedance (Z) of a passive element is defined as the ratio between the phasor
voltage and the phasor current at this element.

Z =
U

I
(50)

The unit for the impedance in the SI is Ohm ([V ] · [A]−1 = [Ω]). This is also true
for impedances associated to inductors and capacitors, despite L and C are measured in
Henry and Farads .

Additionally we define the admitance (Y ) as the inverse of the impedance. For a
passive element of impedance Z the admitance is:

Y =
1

Z
(51)

The admitance is measured in Siemens ([S] = [Ω]−1) in the SI.

By representing the three types of passive elements as impedances we are able to
establish a linear relation between the phasors currents and voltage which is also valid for
inductors and capacitors. This relation is the so called Ohm’s law in the frequency
domain:

U = Z · I (52)

In the following subsections the expressions to calculate the complex impedance for
resistors, inductors and capacitors are obtained.
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6.2 Impedance of a resistor

We want to find an expression to calculate the impedance of resistors. To this end, we
consider a resistor R with a sinusoidal current flowing through it iR(t) which causes a
voltage drop uR(t) which is sinusoidal too.

+ -
uR(t)

iR(t) R

Given that the expression for the current is:

iR(t) =
√

2 · IR · cos(ωt+ ϕi) (53)

The voltage across the resistor calculated with Ohm’s law would be:

uR(t) = R · iR(t) (54)

uR(t) =
√

2 ·R · IR · cos(ωt+ ϕi) (55)

Moving to the frequency domain, we find that the phasors current and voltage are:

IR = IR∠ϕi UR = R · IR∠ϕi (56)

Then, the impedance of a resistor is:

ZR =
UR

IR
=
R · IR∠ϕi
IR∠ϕi

= R (57)

In the frequency domain resistors will be represented by means an impedance ZR = R
so that Ohm’s law in the frequency domain is verified

UR = ZR · IR (58)

It is interesting to look at the phase shift between the current and the voltage across
the resistor. As can be seen both magnitudes are in-phase.

ϕi = ϕu ∆ϕu,i = 0 (59)
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6.3 Impedance of an inductor

To obtain an expression to calculate the impedance of inductors, we consider the case of
an inductor of self inductance L with a sinusoidal current iL(t) flowing through it.

+ -
uL(t)

iL(t) L

Considering that the current is:

iL(t) =
√

2 · IL · cos(ωt+ ϕi) (60)

The voltage across it can be calculated taking into account the relationship between
the voltage and current in an inductor:

u(t) = L · diL(t)

dt
(61)

Then the voltage u(t) is:

uL(t) = −
√

2 · ω · L · IL · sin(ωt+ ϕi) = −
√

2 · ω · L · IL · cos(ωt+ ϕi −
π

2
) (62)

Moving to the frequency domain we find that the phasors current and voltage are:

IL = IL∠ϕi (63)

UL = −ω · L · IL∠ϕi −
π

2
(64)

Taking into account that the modulus of a complex number in polar form must always
be positive, we write the factor −1 as 1∠π, and operate in the expression of the phasor
voltage:
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UL = (1∠π) · (ω · L · IL∠ϕi −
π

2
) = ω · L · IL∠ϕi +

π

2
(65)

Then, the impedance of the inductor is:

ZL =
UL

IL
=
ω · L · IL∠ϕi + π

2

IL∠ϕi
= ω · L∠π

2
= jωL (66)

In the frequency domain inductors are represented by means an impedance ZL = jωL
and Ohm’s law in the frequency domain is verified:

UL = ZL · IL (67)

If we calculate the phase shift between the current and the voltage across the inductor,
we find that the voltage leads the current by 90o.

ϕu = ϕi +
π

2
∆ϕu,i =

π

2
= 90o (68)

Time domain Frequency domain

ZL=j�L

+ -
UL

IL
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6.4 Impedance of an mutual inductance

If we want to analyse the voltages and currents of coupled inductors, we should represent
the mutual inductance as an impedance too. The expression for the impedance of a mutual
inductance M can be obtained following an analogous reasoning as to find the impedance
of an inductor:

ZM = jωM (69)

6.5 Impedance of a capacitor

The relation between voltage and current in a capacitor is

i(t) = C · du(t)

dt
(70)
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To find an expression to calculate the impedance of capacitors, we obtain the current
that flows trough a capacitor of capacitance C if a certain voltage drop uC(t) is applied
across its terminals.

+ -
uC(t)

iC(t) C

If the voltage across the capacitor is:

uC(t) =
√

2 · UC · cos(ωt+ ϕu) (71)

The current is:

i(t) = C · duC(t)

dt
= −
√

2 · ω · C · UC · sin(ωt+ ϕu) (72)

Expressing the negative sign as a factor 1∠π and transforming the sine function into
a cosine function:

i(t) =
√

2 · ω · C · UC · cos(ωt+ ϕu −
π

2
+ π) (73)

Moving to the frequency domain, we find that the phasors voltage and current are:

UC = UC∠ϕu (74)

IC = jω · C · UC∠ϕu (75)

Then, the impedance of the capacitor is:

ZC =
UC

IC
=

UC∠ϕu
jω · C · UC∠ϕu

=
1

jω · C
=
−j
ω · C

(76)

In the frequency domain capacitors are represented with an impedance ZC = −j/ωC
and Ohm’s law in the frequency domain is verified:

UC = ZC · IC (77)

In this case, the phase shift between the current and the voltage across the capacitor
is also 90o, but now the current leads the voltage by 90o.

ϕi = ϕu +
π

2
∆ϕu,i = −π

2
= −90o (78)
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6.6 Association of impedances

The representation of resistors, inductors and capacitors by means of impedances opens
the possibility of associating passive elements of different nature to obtain an equivalent
impedance. The association is possible because in the frequency domain the relation
between U and I for the three types of passive elements is the same:

U = Z · I (79)

The association of passive elements of different nature (R, L, C) is not possible in the
time domain, because each type of element verifies a different relation between u(t) and
i(t):

uR(t) = R · iR(t) uL(t) = L · diL(t)

dt
iC(t) = C · duC(t)

dt
(80)

6.6.1 Series equivalent impedance

Two or more impedances are series connected if the same current flows through them.
The n impedances in the figure are series connected, since the current I that goes through
all of them is the same.

Z1

+ - ...U1

I Z2

+ -
U2

Zn

+ -
Un

+

U

Each impedance has a phasor voltage drop that is given by Ohm’s law in phasor form:

U1 = Z1 · I1
U2 = Z2 · I2

...
Un = Zn · In
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The total phasor voltage U can be calculated using 2KL in phasor form:

U = U1 + U2 + ...+ Un = Z1 · I + Z2 · I + ....+ Zn · I = (Z1 + Z2 + ....+ Zn) · I (81)

The set of n impedances can be redrawn as an equivalent impedance Zeq

Zeq = Z1 + Z2 + ....+ Zn =
n∑
k=1

Zk (82)

Then,

U = Zeq · I (83)

Z1

+ - ...U1

I Z2

+ -
U2

Zn

+ -
Un

+

U

Zeq

+

U

I

Seen from the voltage source the effect of the n impedances connected in series is iden-
tical to the effect of the equivalent impedance and it would not be possible to distinguish
both configurations. Then we say that both configurations are equivalent.

The voltage divider equation

The voltage divider equation is also valid in the frequency domain. If we have n
impedances series-connected, and the phasor voltage across the whole set is U the phasor
voltage across the impedance k can be calculated with the equation below:

Uk =
Zk
Zeq
·U (84)

6.6.2 Parallel equivalent impedance

Two or more impedances are parallel connected if they have the same phasor voltage
across them. The n impedances in the figure are in parallel since the phasor voltage U
across all of them is the same.

...

...

Z2

+

-

+

-

U U U UZ1 Zn

+

-

+

-
I

I

I1 I2 I3
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Each impedance has a different current flow:

I1 =
U

Z1
= U · Y1

I2 =
U

Z2
= U · Y2

In =
U

Zn
= U · Yn

The total phasor current I can be calculated according to KCL in phasor form:

I = I1 + I2 + ...+ In =
U

Z1
+

U

Z2
+ ...+

U

Zn
= U · ( 1

Z1
+

1

Z2
+ ...+

1

Zn
) (85)

The set of n impedances can be redrawn as an equivalent impedance Zeq

1

Zeq
=

1

Z1
+

1

Z2
+ ...+

1

Zn
=

n∑
k=1

1

Zk
(86)

I =
U

Zeq
(87)

The equations could also be expressed in terms of admitance:

Yeq =
n∑
k=1

Yk (88)

I = U · Yeq (89)

Zeq

+

-

+

-

...

...

Z2

+

-

+

-

U U U UZ1 Zn

+

-

+

-
I

I

I1 I2 I3

UI

I

U

Seen from the current source, the effect of the n impedances connected in parallel is
identical to the effect of the equivalent impedance. We say that both configurations are
equivalent.

The current divider equation

20



The current divider equation can also be used in the frequency domain. Given a set
of n impedances parallel connected, which are supplied with a total current I, the current
flowing through the impedance k is:

Ik =
Yk
Yeq
· I (90)

In the particular case of two impedances connected in parallel the expressions for the
currents I1 and I2 are:

I1 =
Z2

Z1 + Z2
· I (91)

I2 =
Z1

Z1 + Z2
· I (92)

6.7 Components of a complex impedance

We have studied that the impedances that represent the three passive elements are:

ZR = R ∈ R ZL = jω · L ∈ C ZC =
−j
ω · C

∈ C (93)

If we add two or more elements of different nature to obtain the series or parallel
equivalent impedances in some cases we will find impedances with real and imaginary
part:

Z = R+ jX (94)

The real part of the impedance always comes from resistive elements, and it is called
the Resistance (R). The imaginary part always comes from inductors and capacitors (the
so called ”reactive elements”) and is called the Reactance (X).

The following table summarizes the values of the impedance, resistance and reactance
for resistors, inductors and capacitors.

Resistance Reactance Impedance

Resistor R 0 R
Inductor 0 ω · L jω · L
Capacitor 0 −1/ω · C −j/ω · C

Sometimes the complex impedance is plotted as an Impedance triangle, which is
the representation of the impedance in the complex plane.

Im

Re

Z
X

R

�
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The angle of the complex impedance can be calculated as:

ϕ = arctan
X

R
(95)

The cosine of the angle ϕ is the so called power factor of the impedance. The physical
meaning and the practical relevance of the power factor will be studied in further sections.

6.8 Example

In the following circuit the resistor, inductor and capacitor are series-connected and fed
with an AC voltage source.

+
uR

+ -

+-

+

-

i(t)

uL

uC

R=3�

C=10mF

L=50mHug(t) =  2·40·cos(100t) V

Calculate the current i(t) flowing through the circuit and the voltage drop across each
element uR(t), uL(t), uC(t). Draw a phasor diagram with all the voltages and currents.

Solution

The frequency of the source is ω=100 rad/s. First, we obtain the circuit in the fre-
quency domain:

1. Calculation of phasors:

Ug = 40∠0oV

2. Calculation of impedances:

ZR = R = 3Ω

ZL = jω · L = j0.05 · 100 = 5jΩ

ZC =
−j
ω · C

=
−j

100 · 0.01
= −jΩ

3. We solve the circuit in the frequency domain:
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+
+ -

+-

+

-

ZR=3�

Ug=40V

I

ZL=5j�

ZC=-j�

UR

UC

UL

+

Ug=40V

I

Zeq=3+4j�

As the three impedances are series-connected we can calculate the phasor current
as:

I =
Ug

ZR + ZL + ZC
=

40

3 + 5j − j
= 8∠− 53.13oA

The phasors voltage across the three elements are calculated applying Ohm’s law:

UR = I · ZR = 3 · 8∠− 53.13o = 24∠− 53.13oV

UL = I · ZL = 5j · 8∠− 53.13o = 40∠36.87oV

UC = I · ZC = −j · 8∠− 53.13o = 8∠− 143.13oV

Phasor diagram:

Im

Re

I

Ug

UL

UR
UC

4. Finally, we obtain the variables in the time domain using the phasors obtained in
the frequency domain:

i(t) =
√

2 · 8 · cos(100 · t− 53.13o)A

uR(t) =
√

2 · 24 · cos(100 · t− 53.13o)V

uL(t) =
√

2 · 40 · cos(100 · t+ 36.87o)V

uC(t) =
√

2 · 8 · cos(100 · t− 143.13o)V
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7 Analysis of AC circuits

7.1 General remarks

The representation of circuits in the frequency domain makes possible the application of
all the circuit-solving methods that were studied for the analysis of DC circuits to the
analysis of AC circuits. Some general remarks are given next:

• To solve AC circuits in the frequency domain we represent all the sinusoidal currents
and voltages by phasors and the resistors, inductors and capacitors by impedances:

U = Urms∠ϕu I = Irms∠ϕi (96)

ZR = R ZL = jω · L ZC =
−j
ω · C

(97)

• Kirchhoff’s laws are applied in phasor form:

∑
node

I = 0
∑
mesh

U = 0 (98)

• Ohm’s law is verified for all passive elements:

U = Z · I (99)

• Mesh current analysis and node voltage analysis methods can be applied to the
analysis of AC circuits in the frequency domain. Thevenin’s theorem is also fulfilled.

• After solving a circuit in the frequency domain we will move back to the time domain
and provide the instantaneous currents an voltages as sinusoidal functions.

7.2 Mesh current method

7.2.1 Application of the method

The application of mesh current method in AC circuits is analogous to the method that
was learnt for DC circuits. The next steps must be followed:

1. Assign a phasor mesh current to each mesh of the circuit

2. Apply KVL in phasor form to every mesh of the circuit applying a consistent sign
criteria (in this notes we consider voltage drops as positive and voltage rises as
negative) and find a system of equations with the mesh currents as unknowns.

3. Solve the equations to find the currents. In the case of AC circuits it is particularly
useful to express the systems of equations in matrix form.

Mesh equations in matrix form are:

[Z] · [Imesh] = [Ug] (100)

Now [Z] is the impedance matrix whose terms are:
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Zii=Sum of the impedances in mesh i

Zij= - Sum of the impedances shared by mesh i and j

7.2.2 Example

Given the following circuit

R1=2�

+

+

L=1mH L=1mH R1=2�

R2=5�ug1(t)

ug2(t)

R1=2�

L=1mH
i(t)

where:

ug1(t) =
√

2 · 50 · cos(1000 · t)V

ug2(t) =
√

2 · 30 · cos(1000 · t+ 90o)V

Calculate i(t) using mesh current analysis.

Solution

We find the circuit in the frequency domain (ω=1000 rad/s)

1. Impedances:

ZL = jω · L = j · 1000 · 0.001 = jΩ ZR1 = 2Ω ZR2 = 5Ω

2. Phasors:

Ug1 = 50∠0oV = 50V

Ug2 = 30∠90oV = 30jV
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2�

+

+

2�

5�50V

30jV

2�
I

j�

j�

j�

I1 I2

We apply 2KL to find the mesh equations of the system:

Mesh 1: −50 + (2 + j) · I1 + (2 + j) · (I1 − I2) = 0

Mesh 2: 30j + (j + 2 + 5) · I2 + (2 + j)(I2 − I1) = 0

We write the equations in matrix form:

(
2 + j + j + 2 −j − 2
−j − 2 j + 2 + 5 + 2 + j

)
·
(

I1
I2

)
=

(
50
−30j

)

(
4 + 2j −j − 2
−j − 2 2j + 9

)
·
(

I1
I2

)
=

(
50
−30j

)

Solving the equations we find that the phasors mesh current are:

I1 = 11.17− 7.09j = 13.23∠− 32.42oA

I2 = 2.34− 4.19j = 4.8∠− 60.8oA

Then the phasor I is:

I = I1 − I2 = 8.83− 2.9j = 9.3∠− 18.21oA

And the instantaneous current i(t) is:

i(t) =
√

2 · 9.3 · cos(1000 · t− 18.21o)A
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7.3 Node voltage method

7.3.1 Application of the method

The application of node voltage method to the solution of AC circuits is analogous to the
method that we learnt for DC circuits. The next steps can be followed to solve any circuit
using the method:

1. Assign a phasor node voltage to each node of the circuit and label one of them
as reference node. We consider that the reference node is connected to ground
(Urn = 0V )

2. Apply KCL in phasor form to each node of the circuit with a consistent sign criteria
(in this notes we consider currents flowing out of a node as positive and currents
flowing into a node as negative) and find a system of equations with the node voltages
as unknowns.

3. Solve the equations to find the node voltages. The equations can be expressed in
matrix form to make the calculations easier.

[Y ] · [Unode] = [Ig] (101)

now [Y ] is the Admitance Matrix whose terms are:

Yii=Sum of the admitances connected to node i

Yij= - Sum of the admitances shared by nodes i and j

7.3.2 Example

Solve the following circuit using nodal analysis and find the instantaneous voltages u1(t)
and u2(t).

ig1(t) ig2(t)
L

L

C

R

u3=0

u1 u2

R = 2Ω C = 1/5F L = 0.05H

ig1(t) =
√

2 · 3 · cos(10 · t)A

ig2(t) =
√

2 · cos(10 · t+ 90o)A

Solution
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We obtain the circuit in the frequency domain (ω = 10rad/s)

1. Impedances:

ZR = R = 2Ω ZL = j · ω · L = 0, 5jΩ ZC = −j/ω · C = −0, 5jΩ

2. Phasors:

Ig1 = 3∠0oA = 3A

Ig2 = 1∠90oA = jA

3 A

-0.5j �

2 �
0.5j �

0.5j �
j A

U1 U2

U3=0

Nodal equations:

Equation for node 1: − 3 +
U1

2 + 0.5j
+

U1 −U2

−0.5j
= 0

Equation for node 2: j +
U2

0.5j
+

U2 −U1

−0.5j
= 0

The nodal equations in matrix form would be:

(
1

2+0.5j −
1

0.5j − 1
−0.5j

− 1
−0.5j

1
0.5j −

1
0.5j

)
·
(

U1

U2

)
=

(
3
−j

)

Solving the equations:

U1 = 0.5V

U2 = 0.47 + 1.38j = 1.46∠71.2oV

The voltages in the time domain are:
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u1(t) =
√

2 · 0.50 · cos(10 · t)V

u2(t) =
√

2 · 1.46 · cos(10 · t+ 71.2o)V

7.4 Thevenin equivalent

Thenvenin’s theorem is valid for AC circuits in the frequency domain. Thevenin equivalent
of a circuit in the frequency domain consists of a voltage source of value Uth and a series
impedance Zth.

The methods that can be followed to obtain the parameters of the equivalent are
analogous to the ones studied for DC circuits.

+

Uth

Zth A

B

7.4.1 Example 1

In the circuit of the example of section 7.2.2, calculate the current i(t) using Thevenin’s
Theorem.

R1=2�

+

+

L=1mH L=1mH R1=2�

R2=5�ug1(t)

ug2(t)

R1=2�

L=1mH
i(t)

Solution

As we want to find the current i(t), we should calculate the Thevenin equivalent of the
circuit in the frequency domain excluding the central branch of the circuit:
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2�

+

+

2�

5�50V

30jV

j� j�
A

B

1. First we calculate the phasor Thevenin voltage, which is the phasor voltage between
terminals A and B:

2�

+

+

2�

5�50V

30jV

j� j�
A

B

I1

UAB=Uth

+

-

I1 =
50− 30j

2 + j + j + 2 + 5
= 4.59− 4.35jA

Uth = UAB = (7 + j) · I1 + 30j = 36.47 + 4.12jV

2. Calculation of Thevenin impedance

To calculate Zth we have two alternative methods: The calculation of the short-
circuit current and the calculation of the equivalent resistance of the passive circuit
between terminals A and B.

(a) Method 1: Calculation of Isc

We place a short-circuit between A and B and calculate the phasor current (Isc)
flowing from A to B.

2�

+

+

2�

5�50V

30jV

j� j�
A

B

I1 Isc I2

The mesh equations of the circuit can be written in matrix form:
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(
2 + j 0

0 7 + j

)
·
(

I1
I2

)
=

(
50
−30j

)

I1 = 20− 10jA

I2 = −0.6− 4.2jA

Isc = I1 − I2 = 20.6− 5.8jA

Zth =
Uth

Isc
= 1.59 + 0.65jΩ

(b) Method 2: Calculation of ZeqAB

We passivize the system turning off the sources and we obtain the following net
of impedances:

2� 2�

5�

j� j�
A

B

ZeqAB=Zth

Zth = ZeqAB = (7 + j)||(2 + j) = 1.59 + 0.65jΩ

Finally, we connect the central branch that we want to study between terminals AB
of the equivalent and calculate the phasor current (I)

+

Uth

Zth A

B

I

2�

j�

I =
Uth

Zth + Zcentral
= 8.83− 2.91jA = 9.3∠−18.4oA

i(t) =
√

2 · 9.3 · cos(1000 · t− 18.4o)A

Which is the same result that we obtained when we solved the circuit with mesh
analysis.
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7.4.2 Example 2

Find the Thevenin’s equivalent of the circuit of the example in section 7.3.2 between
terminals 2 and 3.

3 A

-0.5j �

2 �
0.5j �

0.5j �
j A

2

3

1

Solution

We want to include all the elements of the circuit in the equivalent.

3 A

-0.5j �

2 �
0.5j �

0.5j �
j A

+

Uth

Zth 2

3

2

3

1

1. Calculation of Thevenin’s voltage

3 A

-0.5j �

2 �
0.5j �

0.5j �
j A

U1 U2

U3=0

+

-

Uth=U2,3

2

3

1

Uth = U2,3 = U2 −U3 = 0, 47 + 1, 38j = 1, 46∠71, 2oV
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2. Calculation of Zth

We passivize the circuit and calculate the equivalent impedance between terminals
2-3

-0.5j �

2 �
0.5j �

0.5j �
Zth=Zeq2,3

2

3

1

Zth = (2 + 0.5j − 0.5j)||0.5j =
2 · 0.5j
2 + 0.5j

= 0.12 + 0.47j = 0.48∠75.96oΩ

We would obtain the same impedance applying the short-circuit current method.

7.5 Analysis of circuits with sources of several frequencies

7.5.1 Superposition principle

To analyse a circuit in with sources of different frequencies act simultaneously, the transfor-
mation of the circuit to the frequency domain can not be applied because: which frequency
is considered for the calculation of the impedances?

To solve this case we can apply the superposition principle, obtain the response of
the circuit to the effect of each source separately and sum up the individual responses to
find the total response of the circuit.

Remember that the superposition principle states that ”The response of a linear cir-
cuit subjected to several excitation sources acting simultaneously equals the sum of the
responses of the circuits when the sources act separately”.

Then if we want to solve a circuit that incorporates sources of two different frequencies,
ω1 and ω2, we will proceed as follows:

1. Turn off all the sources of frequency ω2 replacing the voltage sources by short circuits
and the current sources by open circuits.

2. Transform the circuit into the frequency domain considering the frequency ω1 to
calculate the impedances of the passive elements.

3. Calculate the response of the circuit in the frequency domain (i.e. the phasors current
and voltage at the different parts of the circuit) and then find the instantaneous
currents and voltages in the time domain which constitute the response of the circuit
to the sources of frequency ω1. Note that those instantaneous currents and voltages
are sinusoidal functions of frequency ω1.

4. Turn off all the sources of frequency ω1 replacing the voltage sources by short circuits
and the current sources by open circuits.

5. Recalculate the impedances of the passive elements for the frequency ω2 and obtain
the currents and voltages of the elements in the frequency domain and in the time
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domain. These currents and voltages are the response of the circuit to the sources
of frequency ω2 and are sinusoidal functions of frequency ω2.

6. Obtain the response of the system when all the sources act simultaneously as the
sum of the separate responses in the time domain. The currents and voltages will
be a sum of two sinusoidal functions of frequencies ω1 and ω2.

7.5.2 Example

Calculate the current i(t) and the voltage u(t) in the following circuit:

R=4 �ig1(t) ug2(t)u(t)

i(t)
+

-

C=1mF

+

ig1(t) =
√

2 · 10 · cos(100 · t+ 90)V

ug2(t) =
√

2 · 50 · cos(200 · t− 90)V

Solution

As the two sources have different frequency, we need to apply superposition principle
to solve the circuit.

First we will cancel the voltage source ug2(t) and analyse the response of the circuit
when only the current source ig1(t) is applied. Then we will cancel the current source and
obtain the response of the circuit to the voltage source. The total response is calculated
as the sum of the individual responses.

R=4 �ig1(t) ug2(t)u(t)

i(t)
+

-

C=1mF
R=4 �ig1(t) u1(t)

i1(t)
+

-

C=1mF

R=4 � ug2(t)u2(t)

i2(t)
+

-

C=1mF
+

i=i1(t)+i2(t)

u=u1(t)+u2(t)

=

+

+
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1. Response to ig1(t).

 4 �Ig1=10jA U1

I1
+

-

-10j �

The frequency of ig1(t) is 100 rad/s, then the impedance of the capacitor is −10jΩ.

We apply the current divider equation to calculate I1

I1 = Ig1 ·
ZC

ZR + ZC
= 10j · −10j

4− 10j
= 3.45 + 8.62jA = 9.28∠68.20oA

U1 = I1 · ZR = 13.79 + 34.48jV = 37.14∠68.20oV

That in the time-domain are:

i1(t) =
√

2 · 9.28 · cos(100 · t+ 68.20o)A

u1(t) =
√

2 · 37.14 · cos(200 · t+ 68.20o)V

2. Response to ug2(t)

4 � Ug2=-50j VU2

I2
+

-

-5j �

+

As the frequency of ug2(t) is 200 rad/s, the impedance of the capacitor is −5jΩ.

We apply Ohm’s law in the frequency domain to calculate I2:

I2 =
Ug2

ZR + ZC
=
−50j

4− 10j
= 6.10− 4.88jA = 7.81∠− 38.66A

U2 = I2 · ZR = 24.39− 19.51jV = 31.23∠− 38.66oV

That in the time-domain are:

i2(t) =
√

2 · 7.81 · cos(100 · t− 38.66o)A

u2(t) =
√

2 · 31.23 · cos(200 · t− 38.66o)V
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3. We calculate the response to both fonts acting simultaneously as the sum of indi-
vidual responses in the time domain:

i(t) = i1(t) + i2(t) =
√

2 · 9.28 · cos(100 · t+ 68.20o) +
√

2 · 7.81 · cos(100 · t− 38.66o)A

u(t) = u1(t)+u2(t) =
√

2·37.14·cos(200·t+68.20o)+
√

2·31.23·cos(200·t−38.66o)V

7.6 Analysis of circuits with coupled inductors

7.6.1 Impedance of coupled inductors

Circuits with coupled inductors can also be analysed in the frequency domain applying the
methods studied in previous sections. The impedance for the mutual inductance coefficient
is calculated as:

ZM = jωM (102)

To calculate the voltage drop across the inductors we need to consider the effect of the
self inductance and the effect of the mutual inductance. The polarity of the voltages is
derived from the analysis of the dotted terminals.

7.6.2 Example

Given the following circuit in the frequency domain, obtain the Thevenin’s equivalent
between terminals AB:

ZL1=2j�

A

B

Ug=10jV

ZL2=j�

ZM=3j�

+

UAB

ZR=1�

Solution

We want to find the parameters Uth and Zth that makes the following circuit equivalent
to the initial circuit between terminals A B:

+

Uth

Zth A

B
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Firstly we calculate Thevenin’s voltage, which is the voltage drop between A and B in
open circuit:

ZL1=2j�

-

A

B

Ug=10jV

I1

UAB=Uth

ZL2=j�

ZM=3j�

+

+
ZR=1�

The mesh equation for the circuit at the left is:

−Ug + I1 · ZL1 = 0

I1 =
Ug

ZL1
=

10j

2j
= 5A

Uth = UAB = −ZM · I1 = −5 · 3j = −15jV

Now we calculate Thevenin’s impedance. To this end we place a short circuit between
A and B and calculate the current flowing from A to B:

ZL1=2j�

A

B

Ug=10jV

I1

Isc

ZL2=j�

ZM=3j�

+

UAB

ZR=1�

Applying 2KL to the circuit at the left and the circuit at the right:

−Ug + I1 · ZL1 + ZM · Isc = 0

ZL2 · Isc + ZR · Isc + ZM · I1 = 0

Substituting numerical values:

−10j + I1 · 2j + 3j · Isc = 0

(j + 1) · Isc + 3j · I1 = 0
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Solving the system:

I1 = −0.94 + 1.70jA Isc = 3.96− 1.13jA

Then Thevenin’s impedance is:

Zth =
Uth

Isc
=

−15j

3.96− 1.13j
= 1− 3.5jΩ

8 Power in AC circuits

8.1 Instantaneous power in AC

Imagine that we want to calculate the instantaneous power absorbed by the RLC net in
the following circuit:

+

u(t)

i(t)

p(t)?

The voltage and the current are sinusoidal of the same frequency:

u(t) =
√

2 · U · cos(ωt+ ϕu) (103)

i(t) =
√

2 · I · cos(ωt+ ϕi) (104)

being:
ϕ = ϕu − ϕi (105)

To simplify the analysis of the power, it is more convenient to take the current as phase
origin, then the expressions for the current and voltage would be:

u(t) =
√

2 · U · cos(ωt+ ϕ) (106)

i(t) =
√

2 · I · cosωt (107)

The instantaneous power is the product of the voltage and the current:

p(t) = u(t) · i(t) =
√

2 · U · cos(ωt+ ϕ) ·
√

2 · I · cosωt (108)

using the trigonometric relation:

cosα · cosβ =
1

2
· (cos(α+ β) + cos(α− β)) (109)
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p(t) = U · I · cosϕ+ U · I · cos(2ωt+ ϕ) (110)

and now applying:

cos(α+ β) = cosα · cosβ − sinα · sinβ (111)

the power results:

p(t) = U · I · cosϕ · (1 + cos 2ωt)− U · I · sinϕ · sin 2ωt (112)

If the instantaneous power, the voltage and the current are plotted vs. time, we see
that power is a sinusoidal function whose frequency doubles that of voltage and current.
As can be seen, in some parts of the cycle the power becomes negative. This means that
the RLC net sometimes absorbs power (when the power is positive) but at other instants
delivers power (when the power is negative).

wt

u(t)
i(t)
p(t)

It is interesting to analyse the two terms of the power separately to understand what
is the meaning of equation (112):

p(t) = U · I · cosϕ · (1 + cos 2ωt)︸ ︷︷ ︸
1

−U · I · sinϕ · sin 2ωt︸ ︷︷ ︸
2

If terms 1 and 2 are plotted vs. time we see that the first part of the power correspond
to a power that is always positive (absorbed).

U · I · cosϕ · (1 + cos 2ωt) − U · I · sinϕ · sin 2ωt
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As will be justified next, the ”positive power” corresponds to the power dissipated in the
resistor. The average value of this power is U · I · cosϕ. This expression is also the average
value of the instantaneous power. On the other hand, the ”fluctuating power” corresponds
to the exchange of power that takes place between the source and the capacitor and
inductor. The average value of the fluctuating power is zero and its amplitude U · I · sinϕ.

We define two new terms in relation to power in AC circuits:

• Active power: Is the average value of the instantaneous power

P = U · I · cosϕ (113)

Later it will be justified that the active power represents the power absorbed in the
resistances.

• Reactive power: Is the amplitude of the fluctuating power:

Q = U · I · sinϕ (114)

As we will see in the next sections, the reactive power represents the power exchanged
between the inductors and capacitors and the sources.

To deepen into the meaning of the instantaneous power variation and the active and re-
active power we will analyse the instantaneous power of resistors, inductors and capacitors
separately.

8.2 Power of a resistor

We want to calculate the value of the power absorbed by a resistor of value R when
sinusoidal current iR flows through it and its voltage drop is uR.

+ -
uR(t)

iR(t) R

As was studied before, the phase shift between the voltage and the current across a
resistor is zero:

ϕR = ϕu − ϕi = 0 (115)
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Then, the instantaneous power is:

pR(t) = U · I · (1 + cos(2ωt)) (116)

If we represent the instantaneous power vs. time we see that:

• The instantaneous power of a resistor is always positive. This is consistent with
what we studied before, because resistors always dissipate energy.

• The power fluctuates with frequency 2ω

• The average value of the power is U · I
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The active and reactive power of a resistor are:

PR = U · I · cosϕR = U · I (117)

QR = U · I · sinϕR = 0 (118)

As can be seen, the reactive power in the resistor is zero, since in this element there is
no fluctuation of energy and all the power absorbed from the source is dissipated.

Additionally, considering the relation between the phasor voltage and the phasor cur-
rent across a resistor and the relation verified by the modulus of the two phasors:

U = R · I U = R · I

We may find two additional expressions that can be used to calculate the active power
of a resistor as a function of the voltage or the current and the resistance:

PR = R · I2 =
U2

R
(119)
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8.3 Power of an inductor

As with the resistance, we are going to calculate the power of an inductor with current
flow iL and voltage drop uL:

+ -
uL(t)

iL(t) L

As was studied before, the phase shift between the voltage and the current across an
inductor is 90o:

ϕL = ϕu − ϕi = 90o

Then, the instantaneous power is:

pL(t) = −U · I · sin(2ωt)

If we represent the power we see that:

• The power fluctuates with frequency 2ω being sometimes positive and sometimes
negative. This means that the element at some times absorbs power and at other
times delivers power.

• The average value of the instantaneous power is zero.
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These observations are consistent with what studied about power of inductors: Induc-
tors do not dissipate power, but they store energy in a magnetic field. As can be seen in
the graph in one half of the cycle the energy is stored, and at the next part of the cycle
the energy is released and returned to the source.

The active and reactive power of an inductor are:
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PL = U · I · cosϕL = 0 (120)

QL = U · I · sinϕL = U · I (121)

The active power of an inductor is 0, since P represents an energy dissipation which
does not occur in ideal inductors.

Additionally, considering the relation between the phasor voltage and the phasor cur-
rent across an inductor, and the relation verified by the modulus of the two phasors:

U = jωL · I U = ω · L · I = XL · I

We may find two additional expressions that can be used to calculate the reactive
power of an inductor as a function of the voltage or the current and the reactance of the
inductor:

QL = XL · I2 =
U2

XL
(122)

The reactive power of an inductor is always positive; we say that inductors always
absorb reactive power.

8.4 Power of a capacitor

+ -
uC(t)

iC(t) C

As was studied before, the phase shift between the voltage and the current across a ca-
pacitor is −90o:

ϕ = ϕu − ϕi = −90o

Then, the instantaneous power is:

pC(t) = U · I · sin(2ωt)

If we represent the power we see a similar behaviour to the one of the inductor:

• The power fluctuates with frequency 2ω being sometimes positive and sometimes
negative, what means that the capacitor absorbs and delivers power alternatively.

• The average value of the instantaneous power is zero.
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The observations are consistent with the fact that capacitors do not dissipate power,
but store energy in an electric field instead. What we see in the graph is that in the first
part of the cycle the energy is stored and then the energy is released and returned to the
source.

The active and reactive power of a capacitor are:

PC = U · I · cosϕC = 0 (123)

QC = U · I · sinϕC = −U · I (124)

Additionally, considering the relation between the phasor voltage and the phasor cur-
rent across a capacitor, and the relation verified by the modulus of the two phasors:

U =
−j
ω · C

· I U =
1

ω · C
· I = −XC · I

We may find two additional expressions that can be used to calculate the reactive power
of a capacitor as a function of the voltage or the current and the reactance (XC= − 1

ω·C ):

QC = XC · I2 =
U2

XC
(125)

The reactive power of a capacitor is always negative; we say that capacitors always
absorb reactive power.

8.5 Definitions

We can distinguish two different behaviours in relation to energy in AC circuits:

1. Resistors absorb power from the sources and transform it into heat.

2. Inductors and capacitors absorb power from the sources, store it and return it later.
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The absorbed power and the fluctuating power are both important and must be taken
into account in the analysis of AC circuits. Nevertheless they have a different impact on
circuits: as the first supposes a real consumption of energy the second is a continuous flow
of energy between the source and the inductive and capacitive loads.

We are have defined two types of power in AC systems:

• Active power (P): is power absorbed in resistors. From the mathematical point
of view, the active power of a system can be calculated as:

P = U · I · cosϕ (126)

Active power is measured in Watts [W]

• Reactive power (Q): is the power that fluctuates between the inductors and ca-
pacitors and the sources.

Q = U · I · sinϕ (127)

Reactive power is measured in Volt-Ampere reactive [var]

The instantaneous power can be also expressed in terms of the active and reactive
power as:

p(t) = P · (1 + cos2ωt)−Q · sin 2ωt (128)

Additionally other concepts are important for the analysis of the power absorbed and
delivered in AC circuits:

• Power factor: is the cosine of the phase shift between voltage and current.

p.f. = cosϕ = cos(ϕu − ϕi) (129)

• Complex power (S) Is the complex sum of the active and reactive power.

S = P +Q = U · I · cosϕ+ j · U · I · sinϕ = U · I∗ (130)

Complex power is measured in Volt-Ampere [VA]

• Apparent power (S): Is the modulus of the complex power:

S =
√
P 2 +Q2 = U · I (131)

Apparent power is measured in Volt-Ampere [VA].

• Power triangle: We can plot the active and reactive power in the so-called power
triangle, which is a representation of the complex power in the complex plane.
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S Q

P

�
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As it can be seen, the angle ϕ of the power triangle is the same as the phase shift
between voltage and current.

8.6 Power of a complex impedance

If we consider a complex impedance:

Z = R+ j ·X (132)

Z

+ -I U

The relation between the phasor voltage and current is given by Ohm’s law:

U = Z · I (133)

Note that the angle ϕ is the phase difference between the phasor voltage and the phasor
current, but it is also the angle of the complex impedance.

Z =
U

I
=
U∠ϕu
I∠ϕi

=
U

I
∠ϕu − ϕi =

U

I
∠ϕ (134)

If the impedance is represented as an impedance triangle we see that the same angle
ϕ appears between the voltage and current and between the components of the complex
impedance:

Z

+ -I U Z
�

Im

Re

�
X

R

U
I

The active and reactive and complex power absorbed by the impedance are:

P = U · I · cosϕ = R · I2 (135)

Q = U · I · sinϕ = X · I2 (136)

S = P +Q = Z · I2 (137)
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8.7 Power of an AC source

To calculate the power delivered by an AC source we adopt the sign criteria defined for
DC circuits: A source delivers power when current flows from the lower voltage terminal
towards the higher voltage terminal. The power delivered by a source is taken as positive.

+

-

+
I

U UI

The complex power generated by an AC source is calculated as:

Sg = U · I∗ = Pg +Qgj (138)

The real part of the complex power is the active power delivered by the source and
the imaginary part is the reactive power delivered by the source. In some cases Pg or Qg
might be negative, what means that the source absorbs active or reactive power.

* Proof for equation (138):

U = U∠ϕu I = I∠ϕi ϕ = ϕu − ϕi

Sg = U · I∗ = U∠ϕu · I∠−ϕi = U · I∠ϕ = U · I cosϕ+ j · U · I sinϕ = Pg + j ·Qg

8.8 Boucherot’s Theorem

Boucherot’s Theorem establishes that the total amount of active and reactive power ab-
sorbed in an electric circuit equals the sum of the active and reactive power absorbed by
its passive elements.

PT =
∑
k

Pk (139)

QT =
∑
k

Qk (140)

This principle allows us to derive that in AC circuits there is a power balance in which
the complex power supplied by the sources equals the complex power absorbed by the
passive elements.

For example in the circuit of the figure:
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+

-
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-

U U UZ1

+

-
I

I

I1 I2

The power supplied by the source equals the sum of the complex power absorbed by
the impedances Z1 and Z2.

S} = U · I∗ = U · (I1 + I2)
∗ = SZ1 + SZ2 = (P1 + P2) + j(Q1 +Q2)

8.9 Example

Do a power balance of the following circuit:

+
i(t)

R=3�

C=10mF

L=50mHug(t) =  2·40·cos(�t) V

Solution

The analysis of the circuit was carried out in detail in Section 6.8, where the circuit
was solved in the frequency domain:

+

ZR=3�

Ug=40V

I

ZL=5j�

ZC=-j�

The phasor current I is:

I =
Ug

ZR + ZL + ZC
=

40

3 + 5j − j
= 8∠− 53.13oA

1. Power absorbed by the passive elements:
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• Resistor:

The resistor only absorbs active power

PR = R · I2 = 3 · 82 = 192W

QR = 0var

• Inductor:

The inductor only absorbs reactive power

PL = 0W

QL = XL · I2 = 5 · 82 = 320var

• Capacitor:

The capacitor delivers reactive power

PC = 0W

QC = XC · I2 = −1 · 82 = −64var

Then, the complex power absorbed by the loads is

Sloads = PR + j · (QL +QC) = 192 + j(320− 64) = 192 + 256jV A

2. Power delivered by the source:

Sg = Ug · I∗ = 40 · 8∠53.13o = 320∠53.13o = 192 + 256jV A

As can be seen the power absorbed by the loads equals the power delivered by the source:
Sg = Sloads
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