
Module 3: Analysis of AC circuits

Electrical power engineering fundamentals

Belén Garćıa
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Why AC systems
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The line losses depend on the current that flows through the line.

pload = u · i ploss = RTL · i2

If the voltage of the system is raised up the line losses cuts



Transformers

Transformers are used to change the voltage level of electric en-
ergy.
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Transformers are based in two coupled inductors with different
number of turns. The transformation relation is:

rt =
N1

N2
=

u1
u2



Typical configuration of a power system
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DC vs. AC sources
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u(t) = Umax · cos(ωt + ϕu) i(t) = Imax · cos(ωt + ϕi )



Main parameters of a sinusoidal signal
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u(t) = Umax · cos(ωt + ϕu)

Sinusoidal functions might also be defined in terms of a function
sine (sinα = cos(α− π/2)) but cosine is used in this course



Main parameters of a sinusoidal signal

I Amplitude (Umax): maximum value reached by the voltage
in the whole function range

I Period (T): time needed to complete a cycle (expressed in
[s])

I Frequency: number of cycles described in one second.

f =
1

T
[Hz ]

I Angular frequency: Frequency of the function in radians per
second.

ω = 2 · π · f [rad ] · [s]−1

I Phase angle (ϕ): phase difference between the maximum of
the function and the origin (expressed in [rad] and sometimes
in degrees).



Main parameters of a sinusoidal signal

I Mean value: The mean value of a sinusoidal function equals
zero

Umean =
1

T

∫ t0+T

t0

u(t)dt =
1

T

∫ t0+T

t0

Umax ·cos(ωt+ϕu)dt = 0

I Root mean square value (rms) or effective value:

Urms =

√
1

T

∫ t0+T

t0

u2(t)dt



RMS value of a sinusoidal signal

The RMS value of a sinusoidal signal is:

Urms =

√
1

T

∫ t0+T

t0

U2
max · cos2(ωt + ϕu)dt =

Umax√
2

The rms value of the sinusoidal signals is a key parameter and it is
functions in terms of rms instead of peak values:

U = Urms =
Umax√

2
I = Irms =

Imax√
2

u(t) =
√

2 · U · cos(ωt + ϕu) i(t) =
√

2 · I · cos(ωt + ϕi )



Relative phase shift between two signals

Distance between the zero crossings or the peaks of the signals

u(t) =
√

2 · U · cos(ωt + ϕu) i(t) =
√

2 · I · cos(ωt + ϕi )
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∆ϕu,i = ϕu − ϕi

∆ϕu,i < 0: voltage lags current and current
leads voltage.
∆ϕu,i > 0: current lags voltage and voltage
leads current.



Relative phase shift between two signals
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Voltage lags current

Voltage leads current
Current lags voltage

Current  and voltage are in phase Current  and voltage are in antiphase

�t �t



Challenges of the analysis of AC circuits in the time
domain

1. Operating with sinusoidal functions is not easy.

i1+i2=i3
i1 i2

i3

i3 =
√

2·I1·cos(ωt+ϕi1)+
√

2·I2·cos(ωt+ϕi2) =
√

2·I3·cos(ωt+ϕi3)

Finding I3 and ϕi3 requires complicated math analysis

2. The analysis of AC circuits involves the solution of differential
equations or differential systems of equations.



Analysis of a RLC circuit in the time domain
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u(t) =
√

2 · U · cos(ωt + ϕu)

According to KVL: ug (t) = uR(t) + uL(t) + uC (t)

uR(t) = R · i(t) uL(t) = L · di(t)

dt
uC (t) =
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C
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Analysis of a RLC circuit in the time domain
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ug (t) = R · i(t) + L · di(t)
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dug (t)
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= R · di(t)
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i(t) = itransient + isteady−state

ug (t) =
√

2 ·U · cos(ωt +ϕu) => iss(t) =
√

2 · I · cos(ωt +ϕi )



Some conclusions about the analisis of AC circuits

I The analysis of AC circuits involves the resolution of
differential equations or systems of equations. For complex
circuits finding and a solution is challenging.

I If the excitation of a circuit is a sinusoidal voltage or current
of frequency ω, all the resulting currents and voltages are also
sinusoidal functions of the same frequency.

I Our goal is to find the amplitudes and phase shifts of the
responses.

I Below we introduce the analysis of AC circuits in the
frequency domain which is based in the representation of
sinusoidal functions by means of complex numbers.



Complex numbers: a short review

j =
√
−1

Complex number:

z = a + bj

z = |z |∠θ z = |z | · e jθ
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|z|
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Conversion between rectangular and polar form:

|z | =
√
a2 + b2 θ = arctan

b

a
a = |z | · cos θ b = |z | · sin θ

Euler’s equation:

e±jθ = cos θ ± j sin θ



Phasor representation of a sinusoidal function

u(t) =
√

2 · U · cos(ωt + ϕu)

Applying Euler’s equation (e jθ = cos θ + j sin θ), u(t) can be ex-
pressed as:

u(t) =
√

2 · U · Re(e j(ωt+ϕu)) =
√

2 · Re(U · e jϕu · e jωt)

The important information of u(t) is U and ϕu, since ω is the
same for all the currents and voltages of the circuit.

The phasor representation of a sinusoidal signal is a complex
number that contains information on the rms value and the phase
angle of the sinusoidal function.

U = U · e jϕu = U∠ϕu



Phasor representation of a sinusoidal function
Phasors represent sinusoidal functions in the frequency domain
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Time domain Frequency domain

Uu(t)

u(t) =
√

2 · Re(U · e jϕu · e jωt) U = U · e jϕu = U∠ϕu

u(t) =
√

2 · Re(U · e jωt)



Kirchhoff’s laws in phasor form
It can be proved that KCL and KVL are also verified for the pha-
sors associated to voltages and currents.

ik(t) =
√

2 · Ik · cos(ωt + ϕi ,k) Ik = Ik∠ϕi ,k

Kirchhoff’s current law:

n∑
k=1

ik(t) = 0
n∑

k=1

Ik = 0

uk(t) =
√

2 · Uk · cos(ωt + ϕu,k) Uk = Uk∠ϕu,k = 0

Kirchhoff’s voltage law :

n∑
k=1

uk(t)
n∑

k=1

Uk = 0



Example

Calculate i3(t) given that:

i1(t) =
√

2 ·10 · cos(25t + 45o)A i2(t) =
√

2 ·20 · cos(25t + 90o)A

i1(t) i2(t)

i3(t)

Solution

I1 = 10∠45oA = 7.07 + 7.07jA I2 = 20∠90oA = 20jA

I3 = I1 + I2 = 10∠45o + 20∠90o = 7.07 + 27.07j = 28∠75.36oA

i3(t) =
√

2 · 28 · cos(25t + 75.36o)A



Impedance of a passive element

For capacitors and inductors, the relationships between voltages
and currents are given by differential equation.

uL(t) = L · diL(t)

dt
iC (t) = C · duC (t)

dt
uR(t) = R · iR(t)

To avoid the need of solving differential equations in the analysis
of AC circuits we define the impedance of a passive element:

Z =
U

I
[V ] · [A]−1 = [Ω]

Admitance: Inverse of the impedance:

Y =
1

Z
[Ω]−1 = [S ]



Ohm’s law in the frequency domain

We represent the three types of passive elements as impedances.

+ -
u(t)

i(t) R

Time domain Frequency domain

ZR

+ -
U

I

+ -
uL(t)

iL(t) L

+ -
uC(t)

iC(t) C

ZL

+ -
U

I

ZC

+ -
U

I

Ohm’s law in the frequency domain: U = Z · I



Impedance of a resistor

+ -
uR(t)

iR(t) R
uR(t) = R · iR(t)

Time domain:

iR(t) =
√

2 · IR · cos(ωt + ϕi )

uR(t) =
√

2 · R · IR · cos(ωt + ϕi )

Frequency domain:

IR = IR∠ϕi UR = R·IR∠ϕi ZR =
UR

IR
=

R · IR∠ϕi

IR∠ϕi
= R

Impedance of a resistor: ZR = R



Resistors in the time and frequency domain
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Voltages and currents in resistors are in phase:

ϕi = ϕu ∆ϕu,i = 0



Impedance of an inductor

+ -
uL(t)

iL(t) L
uL(t) = L · diL(t)

dt

Time domain:

iL(t) =
√

2 · IL · cos(ωt + ϕi )

uL(t) = −
√

2·ω ·L·IL ·sin(ωt+ϕi ) = −
√

2·ω ·L·IL ·cos(ωt+ϕi−
π

2
)

Frequency domain:

IL = IL∠ϕi UL = ω·L·IL∠ϕi +
π

2
ZL =

ω · L · IL∠ϕi + π
2

IL∠ϕi
= jωL

Impedance of an inductor: ZL = jωL



Inductors in the time and frequency domain

Time domain Frequency domain

ZL=j�L
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In inductors voltage lead currents by 90o .

ϕu = ϕi +
π

2
∆ϕu,i =

π

2
= 90o



Impedance of a capacitor

+ -
uC(t)

iC(t) C

i(t) = C · du(t)

dt

Time domain:

uC (t) =
√

2 · UC · cos(ωt + ϕu)

i(t) = −
√

2·ω·C ·UC ·sin(ωt+ϕu) =
√

2·ω·C ·UC ·cos(ωt+ϕu−
π

2
+π)

Frequency domain:

UC = UC∠ϕu IC = jωCUC∠ϕu ZC =
UC∠ϕu

jωCUC∠ϕu
=
−j
ωC

Impedance of a capacitor: ZC = −j/ωC



Capacitors in the time and frequency domain

Time domain Frequency domain

ZC=-j/�C
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In capacitor current lead voltage by 90o .

ϕi = ϕu +
π

2
∆ϕu,i = −π

2
= −90o



Association of impedances

I Association of passive elements of different nature is not
possible in the time domain:

uR(t) = R · iR(t) uL(t) = L · diL(t)

dt
iC (t) = C · duC (t)

dt

I In the frequency domain the relation between U and I is the
same for R, L and C:

U = Z · I

I The representation of R, L and C with impedances makes
possible the association of passive elements of different
nature.



Association of impedances in series

Two or more impedances are series connected if the same phasor
current flows through them:

Z1

+ - ...U1

I Z2

+ -
U2

Zn

+ -
Un

+
U

The set of n impedances can be redrawn as an equivalent impedance
Zeq

Zeq = Z1 + Z2 + ....+ Zn =
n∑

k=1

Zk



Voltage divider equation

Z1

+ - ...U1

I Z2

+ -
U2

Zn

+ -
Un

+

U

The voltage divider equation is also valid in the frequency domain.
The phasor voltage across impedance k is:

Uk =
Zk

Zeq
·U



Association of impedances in parallel

Two or more impedances are parallel connected if they have the
same phasor voltage across them:
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The set of n impedances can be redrawn as an equivalent impedance
Zeq
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n∑
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1

Zk
Yeq =

n∑
k=1

Yk



Current divider equation
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The current divider equation is also valid in the frequency domain.
The phasor curretn through across impedance k is:

Ik =
Yk

Yeq
· I

* For the case of two impedances in parallel:

I1 =
Y1

Y1 + Y2
· I =

Z2

Z1 + Z2
· I I2 =

Y2

Y1 + Y2
· I =

Z1

Z1 + Z2
· I



Complex impedance

I The impedances that represent the three passive elements
are:

ZR = R ∈ R ZL = jω · L ∈ C ZC =
−j
ω · C

∈ C

I If we add two or more elements of different nature may find
impedances with real and imaginary part:

Z = R + jX

I The real part of the impedance always comes from resistive
elements, and it is called the Resistance (R).

I The imaginary part always comes from inductors and
capacitors and is called the Reactance (X).



Components of a complex impedance

Impedance triangle:

Im

Re

Z
X

R
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Z = R + jX

ϕ = arctan
X

R

The power factor of an
impedance is the cosine of ϕ

Resistance Reactance Impedance

Resistor R 0 R
Inductor 0 ω · L jω · L

Capacitor 0 −1/ω · C −j/ω · C



Mesh current method

1. Assign a phasor mesh current to each mesh of the circuit

2. Apply 2KL in phasor form to every mesh of the circuit
applying a consistent sign criteria and find a system of
equations with the mesh currents as unknowns.

Mesh equations in matrix form are:

[Z ] · [Imesh] = [Ug ]

[Z ] is the impedance matrix:

Zii=Sum of the impedances in mesh i

Zij= - Sum of the impedances shared by mesh i and j

3. Solve the equations to find the currents.



Node voltage method

1. Assign a phasor node voltage to each node of the circuit
and label one of them as reference node.

2. Apply KCL in phasor form to each node of the circuit with a
consistent sign criteria

Nodal equations in matrix form are:

[Y ] · [Unode ] = [Ig ]

[Y ] is the Admitance matrix whose terms are:

Yii=Sum of the admitances connected to node i

Yij= - Sum of the admitances shared by nodes i and j

3. Solve the equations to find the node voltages.



Thevenin equivalent

Thenvenin’s theorem is valid for AC circuits in the frequency do-
main.

The Thevenin equivalent of a circuit in the frequency domain con-
sists of a voltage source of value Uth and a series impedance Zth.

+

Uth

Zth A

B

The methods that can be followed to obtain the parameters of the
equivalent are analogous to the ones studied for DC circuits.



Superposition principle for the analysis of circuits with
sources of different frequency

R=4 �ig1(t) ug2(t)u(t)

i(t)
+

-

C=1mF

+ ig1(t) =
√

2·10·cos(100·t+90)V

ug2(t) =
√

2·50·cos(200·t−90)V

Which frequency should we consider for the calculation of the
impedances?

Superposition principle: ”The response of a linear circuit sub-
jected to several excitation sources acting simultaneously equals
the sum of the responses of the circuits when the sources act sep-
arately”.



Application of the method: stage 1

1. Turn off all the sources of frequency ω2. Replace the voltage
sources by short circuits and the current sources by open
circuits.

2. Transform the circuit into the frequency domain considering
the frequency ω1 to calculate the impedances of the passive
elements.

3. Calculate the response of the circuit in the frequency domain
(i.e. the phasors current and voltage at the different parts of
the circuit)

4. Find the instantaneous currents and voltages in the time
domain which constitute the response of the circuit to the
sources of frequency ω1.



Application of the method: stage 2

1. Turn off all the sources of frequency ω1.

2. Recalculate the impedances of the passive elements for the
frequency ω2 and obtain the currents and voltages of the
elements in the frequency domain

3. Obtain the currents and voltages in the time domain.

4. Obtain the response of the system when all the sources act
simultaneously as the sum of the separate responses in the
time domain. The currents and voltages will be a sum of two
sinusoidal functions of frequencies ω1 and ω2.



Example

R=4 �ig1(t) ug2(t)u(t)

i(t)
+

-

C=1mF
R=4 �ig1(t) u1(t)

i1(t)
+

-

C=1mF

R=4 � ug2(t)u2(t)

i2(t)
+

-

C=1mF
+

i=i1(t)+i2(t)

u=u1(t)+u2(t)

=

+

+



Instantaneous power

Imagine that we want to calculate the power absorbed by the RLC
net shown in the diagram:

+

u(t)

i(t)

p(t)?

u(t) =
√

2 · U · cos(ωt + ϕu) i(t) =
√

2 · I · cos(ωt + ϕi )

The phase angle between u(t) and i(t) is: ϕ = ϕu − ϕi

For simplicity we take the current as phase origin:

u(t) =
√

2 · U · cos(ωt + ϕ) i(t) =
√

2 · I · cos(ωt)



Instantaneous power of an AC circuit

The instantaneous electric power is the product between u(t) and
i(t):

p(t) = u(t) · i(t) = 2 · U · I · cos(ωt + ϕ) · cos(ωt)

using: cosα · cosβ = 1
2 · (cos(α + β) + cos(α− β))

p(t) = U · I · cosϕ+ U · I · cos(2ωt + ϕ)

using: cos(α + β) = cosα · cosβ − sinα · sinβ

p(t) = U · I · cosϕ+ U · I · (cos2ωt · cosϕ− sin 2ωt · sinϕ)

Rearranging:

p(t)= U·I · cosϕ · (1 + cos 2ωt)− U · I · sinϕ · sin 2ωt



Instantaneous power of an AC circuit

p(t) = U · I · cosϕ · (1 + cos 2ωt)− U · I · sinϕ · sin 2ωt

p(t) is sometimes + and sometimes -

wt

u(t)

i(t)

p(t)



Understanding the instantaneous power

p(t) = U · I · cosϕ · (1 + cos 2ωt)− U · I · sinϕ · sin 2ωt

We analyse the two terms of the power separately:

U · I · cosϕ · (1 + cos 2ωt)

Average value U · I · cosϕ

−U · I · sinϕ · sin 2ωt

Amplitude U · I · sinϕ



Understanding the instantaneous power

I The instantaneous power fluctuates with frequency 2ω being
sometimes positive and sometimes negative

I p(t) is made of two terms:

1. One is always positive and of average vale U · I · cosϕ.

This term is the power absorbed in resistors

P = U · I · cosϕ Active power

2. The other one is sometimes positive and sometimes negative
with average value and amplitude U · I · sinϕ

This term is the power exchanged with the source by inductors
and capacitors

Q = U · I · sinϕ Reactive power



Instantaneous power of a resistor

p(t) = U · I · cosϕ · (1 + cos 2ωt)− U · I · sinϕ · sin 2ωt

ϕR = ϕu − ϕi = 0 pR(t) = U · I · (1 + cos 2ωt)

wt

u(t)

i(t)

p(t)



Instantaneous power of a resistor

The instantaneous power of a resistor is:

pR(t) = U · I · (1 + cos 2ωt)

Remarks:

I The power is always positive. This is consistent with what we
studied before, because resistors always dissipate energy.

I The power fluctuates with frequency 2ω

I The average value of the power is U · I



Active and reactive power of resistors

Given the relation between U and I in resistors:

U = R · I ϕR = 0o

PR = U · I · cosϕR = U · I QR = U · I · sinϕR = 0

P can be also expressed in terms of the resistance:

U = R · I PR = R · I 2 =
U2

R
> 0

The active power of a resistor is always positive; resistors always
absorb active power.



Instantaneous power of an inductor

p(t) = U · I · cosϕ · (1 + cos 2ωt)− U · I · sinϕ · sin 2ωt

ϕL = ϕu − ϕi = 90o pL(t) = −U · I · sin 2ωt

wt

u(t)
i(t)
p(t)



Instantaneous power of an inductor

The instantaneous power of an inductor is:

pL(t) = −U · I · sin 2ωt

Remarks:

I The power of an inductor fluctuates with frequency 2ω being
sometimes positive and sometimes negative.

I The average value of the instantaneous power is zero.

I These observations are consistent with what we studied about
power of inductors: Inductors do not dissipate power, but
they store energy in a magnetic field.

I In the first part of the cycle the energy is stored, and in the
second part the energy is released and returned to the source.



Active and reactive power of inductors

Given the relation between U and I in an inductor:

U = j · ω · L · I ϕL = 90o

PL = U · I · cosϕL = 0 QL = U · I · sinϕL = U · I

Q can be also expressed in terms of the reactance:

U = ω · L · I = XL · I QL = XL · I 2 =
U2

XL
> 0

The reactive power of an inductor is always positive; we say that
inductors always absorb reactive power.



Instantaneous power of a capacitor

p(t) = U · I · cosϕ · (1 + cos 2ωt)− U · I · sinϕ · sin 2ωt

ϕC = ϕu − ϕi = −90o pC (t) = U · I · sin 2ωt

wt

u(t)

i(t)

p(t)



Instantaneous power of a capacitor

The instantaneous power of a capacitor is:

pC (t) = U · I · sin 2ωt

Remarks:

I Power fluctuates with frequency 2ω being sometimes positive
and sometimes negative, what means that the capacitor
absorbs and delivers power alternatively.

I The average value of the instantaneous power is zero.

I The observations are consistent with the fact that capacitors
do not dissipate power, but store energy in an electric field
instead.

I In the first part of the cycle the energy is stored and then the
energy is released and returned to the source.



Active and reactive power of a capacitor

U =
−j
ω · C

· I ϕC = −90o

PC = U · I · cosϕC = 0 QC = U · I · sinϕC = −U · I

Q can be also expressed in terms of the reactance:

U =
1

ω · C
· I = −XC · I QC = XC · I 2 =

U2

XC
< 0

The reactive power of a capacitor is always negative; we say that
capacitors always deliver reactive power.



Power absorbed vs. power exchanged

Two different behaviours in relation to energy in AC circuits:

1. Resistors absorb power from the sources and transform it into
heat.

2. Inductors and capacitors absorb power from the sources, store
it and return it later.

The absorbed power and the fluctuating power are both important
and must be taken into account in the analysis of AC circuits.

Nevertheless they have a different impact on circuits because the
first supposes a real consumption of energy the second is a con-
tinuous flow of energy between the source and the inductive and
capacitive loads.



Active and reactive power
Two types of power in AC circuits:

I Active power (P): Power absorbed in resistors.

P = U · I · cosϕ

Active power is measured in Watts [W]

I Reactive power (Q): is the power that fluctuates between
the inductors and capacitors and the sources.

Q = U · I · sinϕ

Reactive power is measured in Volt-Ampere reactive [var]

I Complex power (S):

S = P + Qj [VA]



Power triangle and other power-related parameters

Im

Re

S Q

P

�

Apparent power (S): Is the modulus of the complex power:

S =
√

P2 + Q2 = U · I [VA]

Power factor: cosine of the phase shift between voltage and cur-
rent.

p.f . = cosϕ = cos(ϕu − ϕi )



Practical importance of the power factor

RTLi

L
oadG

I Inductors and capacitors do not absorb power, but they
exchange it with the source

I However the flow of energy overloads the lines and produces
losses

I Electric companies charge not for the active power but for the
apparent power consumed.

I Ideally the power factor must be 1 (Q=0)

Link

https://www.youtube.com/watch?v=eyn3PvgQAzA


Active power and reactive power of resistors inductors and
capacitors

Resistor ϕR = 0o PR = R · I 2 QR = 0

Inductor ϕ = 90o PL = 0 QL = XL · I 2 = ω · L · I 2 > 0

Capacitor ϕ = −90o PC = 0 QC = XC · I 2 = − 1
ω·C · I

2 < 0

Resistors absorb active power, inductors absorb reactive
power and capacitors deliver reactive power



Power of a complex impedance

Z

+ -I U Z
�

Im
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I

Z = R + jX U = Z · I

Active and reactive power

P = U · I · cosϕ = R · I 2 Q = U · I · sinϕ = X · I 2

Complex power
S = P + Qj = Z · I 2



Complex power of AC souces

Sign criteria for power: A source delivers power when current flows
from the terminal at lower voltage towards the terminal at higher
voltage. Power delivered by sources is taken as positive.

+

-

+
I

U UI

Sg = U · I∗ = Pg + Qg j

The real part of the complex power is the active power delivered
by the source and the imaginary part is the reactive power deliv-
ered by the source. In some cases Pg or Qg might be negative,
what means that the source absorbs active or reactive power.



Boucherot theorem: power balance in AC circuits

The total amount of active and reactive power absorbed in an
electric circuit equals the sum of the active and reactive power
absorbed by its passive elements.

PT =
∑
k

Pk QT =
∑
k

Qk

This implies that the sum of the complex power supplied by the
sources equals the sum of the complex power absorbed by the
impedances.



Example

Z2

+

-

+

-

U U UZ1

+

-
I

I

I1 I2

The power supplied by the source equals the sum of the complex
power absorbed by the impedances Z1 and Z2.

Sg = U · I∗ = U · (I1 + I2)∗ = SZ1 + SZ2 = (P1 + P2) + j(Q1 + Q2)
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