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Circuit models

Real systems can be modelled by means of electrical circuits:
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Circuit analysis rules facilitate the calculation of currents,
voltages and powers at different parts of the systems.



Assumptions

I Lumped-elements circuits: each element is concentrated in
one point of the space. Currents move instantaneously
throughout the circuit.

I Steady state circuits: the circuit has remained under the
same conditions for enough time to reach permanent regime.



Analysis of electrical circuits

I Electrical circuit: Excitation / Response

I Apply basic rules to determine the circuit response as a
function of the excitation.

I Laws are based in the principles of electromagnetism.



Charge

I Property of the materials

I Origin of electrostatic interaction.

I Bipolar nature

I Interaction

+ + - -+ -

I Unit SI: Coulombs [C]

qe− = −1.6 · 10−19C



Voltage

I The presence of charge originates an electric field distribution

I A charge within an electric field possesses an electric
potential energy which is the so called potential or voltage
at this point.
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Gravitational simile
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Epk = m · g · hk

At each point of the path the trolley has a certain potential
energy and when the trolley moves between two points it losses or
gain potential energy



Voltage difference

The voltage difference between two points of the space is the
work that must be supplied to move a charge between these two
points.

u =
dw

dq

Voltage is measured in Volts [V] in the SI.



Current

Free electrons can move in conductive materials if they are
subjected to a certain voltage difference.
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Electric current or intensity is defined as the total amount of
electric charge that flows through the section of a conductive
material per unit of time.

i(t) =
dq

dt

Current is measured in Amperes [A] in the SI.



Sign criteria

I Electronic current criteria. Negative charges move from
lower voltages to higher voltages. What happens in real
systems.

I Conventional current criteria. Positive charges move from
higher voltages to lower voltages. We will adopt this criteria.
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Electric power

is defined as work done per unit of time

p =
dw

dt

Electric power can be calculated as:

p =
dw

dt
=

u · dq
dt

= u · i

Electric power is measured in Watts [W] in the SI



Power absorbed or delivered

I An element absorbs power when current moves from a point
of higher voltage towards a point at lower voltage. The
charges loose energy when going through this element.

I An element delivers power when current flows from a point at
lower voltage towards a point with higher voltage. Then, the
charges gain energy on their way through the element.
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Sign criteria

In electric circuits there is always a power balance between the
power delivered by sources and the power absorbed by resistors.

The sign criteria that we will adopt is:

I Power delivered by sources is taken as positive and power
absorbed by sources is taken as negative.

I Power absorbed by resistors is taken as positive (resistors
never deliver energy)

Power balance

psources = presistors



Kirchhoff’s current law

Kirchhoff’s current law (KCL), also referred to as first
Kirchhoff’s law, is based in the charge conservation principle and
states that the algebraic sum of the current at any node of a
circuit equals zero.

∑
i = 0



Kirchhoff’s current law

Electric charges flow into the node or out of the node through
the branches connected to it, but no current is stored in the
junction.

i1+i2=i3
i1 i2

i3

The adoption of the sign criteria is arbitrary, but we will take:

Currents flowing out of the node +

Currents flowing into the node -

∑
i = 0 => −i1 − i2 + i3 = 0



Example

In the following circuit, calculate the value of iR

i1=3A i3=25Ai2=6A i4=2A

iR

Applying KCL we get:

∑
i = 0 => −i1 + i2 − i3 + i4 + iR = 0

iR = 3 − 6 + 25 − 2 = 20A



Kirchhoff’s voltage law

Kirchhoff’s voltage law (KVL), also referred to as second
Kirchhoff’s law, is based in the energy conservation principle and
states that the algebraic sum of the voltages around a closed
path in a circuit equals zero.

∑
u = 0



Kirchhoff’s voltage law

Charges moving around a closed path loose energy at some
sections of the path and gain energy at some others but the total
gain zero.
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u1+u4=u2+u3

We will take:

Voltage drops +

Voltage rises -

∑
u = 0 => u1 − u2 − u3 + u4 = 0



Mechanical simile

In a roller-coaster where the speed of the trolley is the same at
the beginning and at the end of the path, the potential energy rises
at growing sections equals the energy drops at decreasing sections.
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∆E1 = Ep2−Ep1, ∆E2 = Ep3−Ep2, ∆E3 = Ep4−Ep3, ∆E4 = Ep5−Ep4

∆E1 + ∆E3 = ∆E2 + ∆E4



Example
Calculate the value of u5:

u1=25V

- +- + - +

- +- +

u2=10V u3=5V

u4=15Vu5

i

∑
u = 0 => −u1 − u2 − u3 + u4 + u5 = 0

u5 = 25 + 10 + 5 − 15 = 25V



Active and passive elements

I Active elements: Supply energy to the circuit

Battery GGenerator
+

-

I Passive elements: Absorb or store electric energy.

Resistor Inductor Capacitor



Resistors

I Resistors are used to model elements that transform electric
energy into heat (i.e. bulbs, electric radiators..).

I For circuit analysis we characterize these elements by means
of the so called electrical resistance or resistance (R).

I Resistance is measured in Ohms [Ω] in the SI.

R



Physical meaning

I The concept of electrical resistance is related with the loss of
energy experienced by the charges flowing though a certain
section of a conductive material.

I The charges collide and those collisions dissipate energy which
is transformed into heat.

I The electric resistance of an element depends on the nature of
the material it is constituted of and on its geometry.
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Resistivity

I The resistivity (ρ) of a material is a physical property that is
related with how easily electrons move inside it. Link

I Resistivity is the inverse of conductivity (σ) and is measured
in [Ω] · [m]−1 in the SI.

R =
ρ · l
S

I Additionally, we define the conductance of an element (G) as
the inverse of its resistance. Conductance is measured in
Siemens [S] in the SI.

G =
1

R

https://www.engineeringtoolbox.com/resistivity-conductivity-d_418.html


Ohms’s law

I Electric charges always lose energy when they flow though a
resistor.

I In circuit analysis the loss of energy is characterized as a
voltage drop. The relative polarity between voltage and
current in a resistor is always as shown below:

R

+ -u

i

I Ohm’s law provides the relation between the current and the
voltage drop across a resistor:

u = R · i



Power absorbed by a resistor

Resistors always absorb energy (i.e. never deliver it).

pR = u · i

R

+ -u

i

u = R · i

Then:
pR = R · i2

pR =
u2

R



Ideal voltage sources

I Ideal voltage sources keep a constant voltage drop across their
terminals regardless the current flowing through them.

I Ideal voltage sources provide DC or AC voltage.
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Ideal voltage sources

To characterize an ideal DC voltage source we need to know its
output voltage, which is the voltage drop across its terminals,
and its polarity (indicated by the signs + -).

-
+

ug

The power supplied by a voltage source can be calculated as the
product of the output voltage and the current flowing through it.

-
+ug i

pg = ug · i



Ideal voltage sources

I Although voltage sources are active elements they might
absorb power.

I A source delivers power if current flows from - to + and
absorbs power if current flows from + to -

I Sign criteria: Power delivered by sources +. Power absorbed
by sources -

Example

-
+ug=10V

pg=20 W

DELIVERS

i=2A

-
+ug=10V

pg=-20 W

ABSORBS

i=2A



Ideal current sources

I Ideal current sources keep a constant current flow through
them regardless the voltage drop across their terminals.

I Ideal current sources can be DC or AC.
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Ideal current sources

I To define an ideal current source we need
to know its output current, and its
polarity (indicated by the direction of the
arrow).

I Power supplied by an ideal current source:

ig

pg = ig · u

Example

ig=5A
pg=15 W

DELIVERS
u=3V ig=5A pg=-15 W

ABSORBS

u=3V
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Real voltage sources

A real voltage source is modelled as an ideal voltage source in
series with a resistor.
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The supplied voltage is not constant but depends on the
current flowing through the circuit



Real voltage sources
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u = ug − Rg · i
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Real voltage sources
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Efficiency
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Power supplied to the resistor:

pg = R · i2 = R ·
u2g

(Rg + R)2

Internal losses of the source:

pRg = uRg · i = Rg ·
u2g

(Rg + R)2

Efficiency of the source

η =
pg

pg + pRg

=
R

Rg + R



Real current source

A real current sources is modelled as an ideal current source in
parallel with a resistor.

ig Rg



Real current source

Rg

source

R
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u

iRg

ig

The supplied current (i) is not constant but depends on the
voltage drop (u) across its terminals.

i = ig − u

Rg



Circuit analysis

To tackle the analysis of resistive electrical circuits we will use
the basic rules introduced so far:

I Kirchhoff laws ∑
i = 0

∑
u = 0

I Ohm’s law
u = R · i

Additionally it is helpful to simplify electrical circuits by
associating elements or transforming them into equivalent ones.



Series connected resistors

Two or more elements are connected in series if the same
current flows through them.

R1
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...+ -u2 + -un
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u1 = R1 · i u2 = R2 · i ... un = Rn · i

u = u1+u2+...+un = R1·i+R2·i+....+Rn ·i = (R1+R2+....+Rn)·i



Series connected resistors

Two or more elements are connected in series if the same
current flows through them.
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u1 = R1 · i u2 = R2 · i ... un = Rn · i

u = u1+u2+...+un = R1·i+R2·i+....+Rn ·i = (R1+R2+....+Rn)·i



Series connected resistors

The set of n resistors can be redrawn as an equivalent
resistance Req:
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i Req

Req = R1 + R2 + ....+ Rn =
∑
k

Rk

u = Req · i



Example

Calculate the current and voltage drop across R1, R2 and R3.

R1=3�i R2=5 � R3=10�

-
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u=18V



Example

i Req=18 �

-
+

u=18V

i =
u

Req
=

18

18
= 1A

R1=3 �

+ -u1i=1A

R2=5 � R3=10 �
+ -u2 + -u3

-
+

u=18V

u1 = R1 · i = 3V u2 = R2 · i = 5V u3 = R3 · i = 10V



The voltage divider equation

Some electronic devices uses nets formed by several resistors to
obtain a fraction of the output voltage of a source. The voltage
drop across each of the series connected resistors is a portion of
the voltage of the source.
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The equation to calculate the voltage drop across resistor k is:

uk =
Rk

Req
· u



Parallel connected resistors
Two or more elements are connected in parallel if they have

the same voltage drop across them.
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Parallel connected resistors
The set of n resistors can be redrawn as an equivalent

resistance Req:
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In terms of conductance:

Geq =
∑
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Current divider

A current divider consists of a circuit constituted by several
parallel connected resistors that can be used to obtain a fraction of
the output current of a source
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The current at the resistor k is

ik =
Gk

Geq
· i



Current divider for two resistors in parallel
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Ideal voltage sources in series

Ideal voltage sources in series can be replaced by an equivalent
voltage source.
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The output voltage of the equivalent voltage source is the sum
of the voltages of the individual sources taking into account their
polarity

ueq = u1 + u2 − u3



Ideal current sources in parallel

Ideal current sources in parallel can be replaced by an
equivalent current source.
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The output current of the equivalent ideal current source is the
algebraic sum of the output currents of the ideal current sources:

ieq = i1 − i2 + i3



Transformation of real sources
Real voltage sources can be redrawn as equivalent real current

sources and the other way around.
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The sources are equivalent if:

ig =
ug
Rgu

and Rgu = Rgi



Inductors and capacitors

I We have studied that resistors are passive elements that
transform electric energy into heat

I Now we introduce another type of passive elements which,
unlike resistors, do not dissipate energy but store it instead

I Capacitors are elements that store electric energy in an
electric field

I Inductors are elements that store electric energy in a magnetic
field



Capacitor

Capacitor: two metallic plates separated a distance d with a
dielectric material between them.

d

S

dielectric �

ε = ε0 · εr
Capacitance is measured
in Farads [F] in the SI.
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Capacitor: relation between voltage and current

+ -
u(t)

i(t) C

q = C · u =>
dq

dt
= C · du

dt
=> i(t) = C · du(t)

dt

Voltage drop across the terminals of the capacitor for a certain
current:

u(t) = u(t0) +
1

C

∫ t

t0

i(t)dt

The voltage across a capacitor always varies smoothly.



Capacitor in DC

In DC circuits capacitors behave as open circuit in steady
state:

i(t) = C · du(t)

dt
= C · dug

dt
= 0

In transient conditions, the voltage changes and the current is
not zero.
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Power and energy stored in a capacitor

+ -
u(t)

i(t) C

Power:

p = u · i = u · C · du
dt

Energy:

p =
dw

dt
=>

∫
dw = C

∫
u · du

w =
1

2
· C · u2



Association of capacitors in series
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i Ceq
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=
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Association of capacitors in parallel
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Inductors

Inductors are passive elements that take energy from a source
and store it in a magnetic field.

N
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Sfe
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Inductance:

L =
N2 · Sfe · µfe

lfe
[H]

i(t)

�(t)
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u(t)

N · φ = L · i



Inductors: relation between voltage and current

+ -
u(t)

i(t) L

Faraday law:

u = N · dφ
dt

N · φ = L · i => N · dφ
dt

= L · di
dt

u(t) = L · di(t)

dt
i(t) = i(t0) +

1

L

∫ t

t0

u(t)dt

Current through an inductor always varies smoothly.



Inductors in DC circuits

If an inductor is fed with a DC current source of constant value
ig , the voltage across the inductor would be zero:

u(t) = L · di(t)

dt
= L · dig

dt
= 0

In DC, in steady state, an inductor behaves as a short
circuit.

In transient conditions the current flowing through the inductor
changes and the voltage drop across the inductor is not null until
steady state is reached.



Power and energy

Power absorbed by an inductor

p = u · i = i · Ldi
dt

Energy stored in a inductor:

p =
dw

dt
= L · i · di

dt
=>

∫
dw = L

∫
i · di

w =
1

2
· L · i2



Association of inductors in series

[H]
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i Leq

u = u1 + u2 + ...+ un = (L1 + L2 + ...+ Ln) · di
dt

= Leq ·
di

dt

Leq = L1 + L2 + ...+ Ln =
∑
i

Li



Association of inductors in parallel
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Coupled inductors

+
i1(t)

L1
- L2

+

-

u1(t) u2(t)

i2(t)=0
�1

i1(t)

M

Mutual inductance coefficient (M): Degree of coupling between
the inductors. It is measured in [H] in the SI.

u1(t) = L1 ·
di1(t)

dt
u2(t) = M · di1(t)

dt



Coupled inductors

If inductor 2 is supplied with current i2 a second flux φ2 is be
created:

+
i1(t)

L1
- L2

+

-

u1(t) u2(t)

i2(t)
�1

i1(t)

M

i2(t)

��

u1(t) = L1 ·
di1(t)

dt
+ M · di2(t)

dt

u2(t) = L2 ·
di2(t)

dt
+ M · di1(t)

dt



Polarity of the coupling: dot convention
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i1(t)

L1
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u1(t) u2(t)

i2(t)

i1(t)

M

i2(t)

u1(t) = L1 ·
di1(t)

dt
+ M · di2(t)

dt

u2(t) = L2 ·
di2(t)

dt
+ M · di1(t)

dt



Polarity of the coupling
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u1(t) u2(t)

i2(t)

i1(t)

M

i2(t)

u1(t) = L1 ·
di1(t)

dt
−M · di2(t)

dt

u2(t) = L2 ·
di2(t)

dt
−M · di1(t)

dt



Polarity of the coupling

+
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u1(t) u2(t)

i2(t)

i1(t)

M

i2(t)

u1(t) = L1 ·
di1(t)

dt
+ M · di2(t)

dt

u2(t) = L2 ·
di2(t)

dt
+ M · di1(t)

dt



Applications of coupled inductors: Transformers

Transformers are used to change the voltage level of electric
energy.

�(t)

+

-

u1
+

+

-

u2
N1 N2

u1 Load

i1

If the number of coils of the two inductors is different, the
voltage u2 differs from u1. Transformation relation:

rt =
N1

N2
=

u1
u2
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