Electrical Power Engineering Fundamentals

Departamento de Ingeniería Eléctrica. Universidad Carlos III de Madrid

Module 4. Three-phase AC Systems. Week 10

Exercise 1. The following circuit shows a balanced three-phase load connected to an ideal balanced three-phase voltage source. (A, B, C) is a direct sequence. Find the current i and the power consumed by the load.

 U_{BC} =400 \perp 30° V

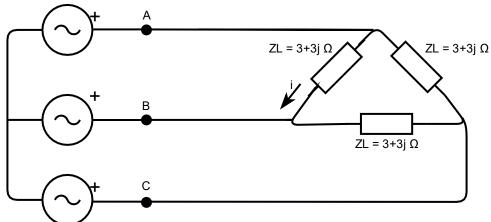


Figure 1 Three-phase AC system 1

Solution: i=94.28 \(\to \) 105° A; S_L=80000+80000j VA

Exercise 2. The following circuit shows 2 balanced three-phase loads connected to an ideal balanced three-phase voltage source. (A, B, C) is a direct sequence. Find: a) the current I_B; b) the power consumed by load 2; c) the power generated by the three-phase voltage source.

 $U_{AB} = 400 \, \text{L}\, 0^{\rm o}\, V$

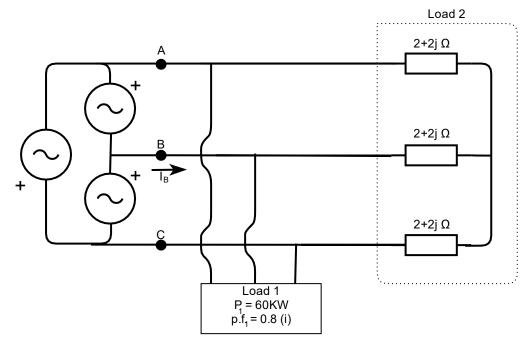


Figure 2. Three-phase AC system 2

Solution: I_B = 189.4 \bot -190° A; $S_{1.2}$ = 40000+40000j VA; S_{3VS} = 100000+85000j VA

Exercise 3. The following figure shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find the impedance Z_{L1} , knowing that the voltage $U_{CA} = 400 \, \text{L}$ -210° V and the total power generated by the balanced three-phase voltage source $S_{3VS} = 60000 + 40000$ j VA.

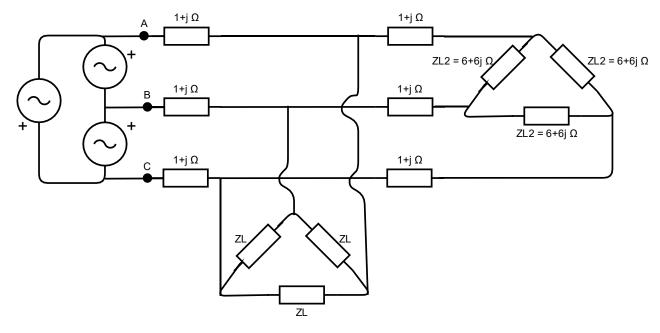


Figure 3. Three-phase AC system 3

Solution: $Z_L = 3.15 + 0.45j \Omega$

Exercise 4. The following circuit shows 3 balanced three-phase loads connected to an ideal balanced three-phase voltage source. In the circuit, the load 3 is composed of 3 capacitors of 1 mF each that can be connected in Y or in Δ . Choose the connection to minimize the current I_B . Justify the choice.

$$U_{AB} = 400 \, \square \, 0^{o}$$

$$f = 50 Hz$$

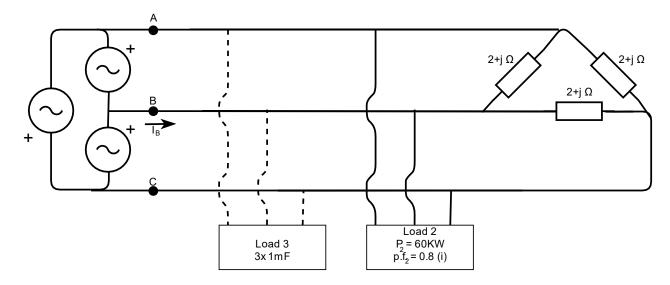


Figure 4 Three-phase AC system 4

Solution: Δ . $Q_T = -9796.44$ var