

# Electrical power engineering fundamentals

Partial exam. 25th November 2020

**Instructions** Solve the problems using the methods indicated in the problem statements and write a summary of your results in this paper. Only the solutions obtained with these methods will be graded.

Name.....

### DC Circuits

Given that the values of the parameters are  $R_1 = 1\Omega$ ,  $R_2 = 2\Omega$ ,  $R_3 = 3\Omega$ ,  $R_4 = 4\Omega$ ,  $R_5 = 5\Omega$ ,  $u_{g1} = 1V$ ,  $i_{g2} = 2A$ ,  $u_{g3} = 3V$ ,  $u_{g4} = 4V$ 



- a) Find the Thevenin equivalent in the circuit of the figure on the left between A and B **including all the elements of the circuit in it**. Draw the equivalent indicating the obtained values for the parameters. (6.5 points)
- b) Calculate the value of the resistor  $R_L$  that must be connected between A and B to extract the maximum power from the circuit. Calculate the power absorbed by the resistor. (3.5 points)

## Solution

a) First We calculate Thevenin voltage by the open circuit analysis

We apply second Kirchhoff law to the two mesh of the circuit and find the currents:

$$i_1 = i_{q2} = 2A$$

$$i_2 = \frac{u_{g4}}{R_3 + R_4 + R_5} = 0.33A$$

$$uth = uAB = u_{i_{g2}} + u_{g3} - u_{R3} = -u_{g1} + (R_1 + R_2) \cdot i_1 + u_{g3} - R_3 \cdot i_2 = 7V$$



Then we calculate Thevenin resistance passivizing the circuit:

$$R_{th} = R_1 + R_2 + (R_3||(R_4 + R_5)) = 5.25\Omega$$

b) Maximum power transfer  $R_L = R_{th} = 5.25\Omega$ 

Power absorbed by  $R_L$ :

$$i_L = \frac{u_{th}}{R_{th} + R_L} = 0.67A$$

$$P_{R_L} = R_L \cdot i_L^2 = 2.33W$$

## AC circuits

Given that the values of the parameters are  $R=4,\,L=0.1H,\,C=25mF$ 

$$i_{g1}(t) = \sqrt{2} \cdot 10 \cdot \cos 10tA$$
  $u_{g2}(t) = \sqrt{2} \cdot 2 \cdot \cos(10t + 90)A$   $u_{g3}(t) = \sqrt{2} \cdot 15 \cdot \cos 10tV$   $i_{g4}(t) = \sqrt{2} \cdot \cos(10t - 90)A$ 



- a) Write the mesh equations of the circuit.(Label the mesh currents with the names provided in the figure and take the mesh currents in clockwise direction). (3.5 points)
  - b) Solve the equations and find the mesh currents (write phasors mesh currents below) (2.5 points)
  - c) Do a power balance of the circuit and write a summary of your results below. (4 points)

#### Solution

Circuit in the frequency domain  $\omega = 10rad/s$ 

$$Z_R = 4\Omega$$
  $Z_L = j\Omega$   $Z_C = -4j\Omega$ 

$$\underline{\mathbf{I}}_{a1} = 10A$$
  $\underline{\mathbf{U}}_{a2} = 2jV$   $\underline{\mathbf{U}}_{a3} = 15V$   $\underline{\mathbf{I}}_{a4} = -jA$ 

Mesh equations:

$$\underline{\mathbf{I}}_1 \cdot Z_L + \underline{\mathbf{U}}_{g3} + Z_R \cdot (\underline{\mathbf{I}}_1 - \underline{\mathbf{I}}_2) = 0$$

$$\underline{\mathbf{I}}_{2} = \underline{\mathbf{I}}_{g1}$$

$$-\underline{\mathbf{U}}_{g2} - \underline{\mathbf{U}}_{g3} + Z_{L} \cdot (\underline{\mathbf{I}}_{3} - \underline{\mathbf{I}}_{4}) = 0$$

$$\underline{\mathbf{I}}_{4} = \underline{\mathbf{I}}_{g4}$$

b) Mesh currents:

$$\underline{\mathbf{I}}_1 = 5.88 - 1.47j = 6.06 \angle -14.03A$$
  $\underline{\mathbf{I}}_2 = 10A$   $\underline{\mathbf{I}}_3 = 2 - 16j = 16.12 \angle -82.87A$   $\underline{\mathbf{I}}_4 = -jA$ 

c) Power balance

$$\begin{split} P_R &= Z_R \cdot |\underline{\mathbf{I}}_1 - \underline{\mathbf{I}}_2|^2 = 76.47W \\ Q_L &= X_L \cdot |\underline{\mathbf{I}}_1|^2 + X_L \cdot |\underline{\mathbf{I}}_3 - \underline{\mathbf{I}}_4|^2 = 36.76 + 229 = 261var \\ Q_C &= X_C \cdot |\underline{\mathbf{I}}_4|^2 = -4var \end{split}$$

$$S_{loads} = P_R + j \cdot (Q_L + Q_C) = 76.47 + j261.76jVA$$

Sources:

$$S_{g1} = \underline{\mathbf{U}}_{g1} \cdot \underline{\mathbf{I}}_{g1}^* = 164.7 + 78.82j = 182.6 \angle 25.57VA$$

$$\underline{\mathbf{U}}_{g1} = Z_R \cdot (\underline{\mathbf{I}}_1 - \underline{\mathbf{I}}_2) + \underline{\mathbf{U}}_{g2} = 16.47 + 7.9j = 18.26 \angle 25.57V$$

$$S_{g2} = \underline{\mathbf{U}}_{g2} \cdot (\underline{\mathbf{I}}_3 - \underline{\mathbf{I}}_2)^* = -32 - 16j = 37.78 \angle -153.4$$

$$S_{g3} = \underline{\mathbf{U}}_{g2} \cdot (\underline{\mathbf{I}}_3 - \underline{\mathbf{I}}_1)^* = -58.2 + 217.9j = 225.59 \angle 105VA$$

$$S_{g4} = \underline{\mathbf{U}}_{g4} \cdot \underline{\mathbf{I}}_{g4}^* = 2 - 19j = 19.1 \angle -84VA$$

$$\underline{\mathbf{U}}_{g4} = Z_L \cdot (\underline{\mathbf{I}}_4 - \underline{\mathbf{I}}_3) + Z_C \cdot \underline{\mathbf{I}}_4 = -19 - 2j = 19.1 \angle -174V$$

$$S_g = S_1 + S_2 + S_3 + S_4 = 76.47 + 261.76jVA$$