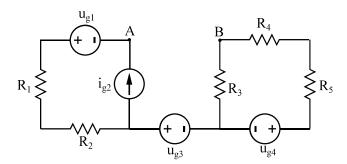


Electrical power engineering fundamentals


Partial exam. 25th November 2020

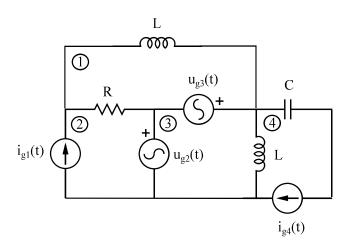
Instructions Solve the problems using the methods indicated in the problem statements and write a summary of your results in this paper. Only the solutions obtained with these methods will be graded.

Name.....

DC Circuits

Given that the values of the parameters are $R_1 = 1\Omega$, $R_2 = 2\Omega$, $R_3 = 3\Omega$, $R_4 = 4\Omega$, $R_5 = 5\Omega$, $u_{g1} = 1V$, $i_{g2} = 2A$, $u_{g3} = 3V$, $u_{g4} = 4V$

- a) Find the Thevenin equivalent in the circuit of the figure on the left between A and B including all the elements of the circuit in it. Draw the equivalent indicating the obtained values for the parameters. (6.5 points)
- b) Calculate the value of the resistor R_L that must be connected between A and B to extract the maximum power from the circuit. Calculate the power absorbed by the resistor. (3.5 points)



AC circuits

Given that the values of the parameters are $R=4,\,L=0.1H,\,C=25mF$

$$i_{g1}(t) = \sqrt{2} \cdot 10 \cdot \cos 10tA$$
 $u_{g2}(t) = \sqrt{2} \cdot 2 \cdot \cos(10t + 90)A$

- a) Write the mesh equations of the circuit.(Label the mesh currents with the names provided in the figure and take the mesh currents in clockwise direction). (3.5 points)
 - b) Solve the equations and find the mesh currents (write phasors mesh currents below) (2.5 points)
 - c) Do a power balance of the circuit and write a summary of your results below. (4 points)