Electrical Power Engineering Fundamentals Second partial exam, April 12th 2018

1. Solve the following circuit in the frequency domain using nodal analysis and obtain the phasors current at each branch.

$\mathrm{R} 1=3 \Omega ; \mathrm{R} 2=1 \Omega ; \mathrm{L} 1=0.01 \mathrm{H} ; \mathrm{L} 2=0.02 \mathrm{H} ; \mathrm{C}=0.01 \mathrm{~F}$
$u_{g 1}(t)=\sqrt{2} \cdot 100 \cos (100 t) V$
$i_{g 2}(t)=\sqrt{2} \cdot 10 \cos (100 t+90) A$
$i_{g 3}(t)=\sqrt{2} \cdot 5 \cos (100 t) A$
$i_{g 4}(t)=\sqrt{2} \cdot 3 \cos (100 t+90) V$
2. Calculate the power balance of the circuit
3. Calculate the Thevenin equivalent of the circuit at terminals AB.
4. We connect an impedance $Z_{\text {load }}=R+j X \Omega$ at terminals AB as shown in the figure. Calculate the value of Zload knowing that the complex power generated by the Thevenin source in this situation is $\mathrm{S}=50+150 \mathrm{j}$.

SOLUTION

a) We move to the frequency domain ($\omega=100 \mathrm{rad} / \mathrm{s}$), obtaining the impedances of the pasive elements and the phasors that represent the different currents and voltages.

Impedances:

$$
Z_{R 1}=3 \Omega \quad Z_{R 2}=1 \Omega \quad Z_{L 1}=j \Omega \quad Z_{L 2}=2 j \Omega \quad Z_{C}=-j \Omega
$$

Phasors:

$$
\underline{U_{g 1}}=100 \mathrm{~V} \quad \underline{I_{g 2}}=10 j A \quad \underline{I_{g 3}}=5 A \quad \underline{I_{g 4}}=3 j A
$$

Nodal equations for nodes A and B:
Node A:

$$
\begin{gathered}
\underline{U_{A}}=\underline{U_{g 1}} \\
\frac{U_{B}-\underline{U_{A}}}{Z_{C}}+\frac{U_{B}}{Z_{R}+Z_{L 2}}+\underline{I_{g 2}}-\underline{I_{g 3}}+\underline{I_{g 4}}=0
\end{gathered}
$$

Solving the equations we find the nodal voltages:

$$
\begin{gathered}
\underline{U_{A}}=100 \mathrm{~V} \\
\underline{U_{B}}=97.2+20.6 j \mathrm{~V}=99.36_{11.96^{\circ}} \mathrm{A}
\end{gathered}
$$

Now we calculate the currents that flow through the different branches:

$$
\begin{gathered}
\underline{I_{1}}=\frac{U_{A}}{Z_{L 1}}=-100 j A \\
\underline{I_{2}}=\frac{U_{A}-\underline{U_{B}}}{Z_{C}}=20.6+2.8 j A=20.79_{7.74^{\circ}} A
\end{gathered}
$$

$$
\begin{gathered}
\underline{I_{3}}=\frac{U_{B}}{Z_{R 1}+Z_{L 2}}=25.6-10.2 j \mathrm{~A}=27.56_{-21.72^{\circ}} \mathrm{A} \\
\underline{I_{g 1}}=\underline{I_{1}}+\underline{I_{2}}-\underline{I_{g 2}}=20.6-107.2 j=109.16_{-79.12^{\circ}} \mathrm{A}
\end{gathered}
$$

b) Power balance

Active and reactive power of pasive elements

$$
\begin{gathered}
P_{\text {loads }}=Z_{R 1} \cdot I_{3}^{2}+Z_{R 2} \cdot I_{g 4}^{2}=2287.2 \mathrm{~W} \\
Q_{\text {loads }}=X_{L 1} \cdot I_{1}^{2}+X_{L 2} \cdot I_{3}^{2}-\left|X_{C}\right| \cdot I_{2}^{2}=11087 \mathrm{~V} \mathrm{Ar} \\
S_{\text {loads }}=2287.2+j 11087 \mathrm{VA}
\end{gathered}
$$

Complex power of sources:

$$
\begin{gathered}
S_{U g 1}=\underline{U_{g 1}} \cdot \underline{I_{g 1}}{ }^{*}=2060+10720 j V A \\
S_{I g 2}=\left(\underline{U_{A}}-\underline{U_{B}}\right) \cdot \underline{I_{g 2}}{ }^{*}=-206-28 j V A \\
S_{I g 3}=\underline{U_{g 1}} \cdot \underline{I_{g 1}}{ }^{*}=486+103 j V A \\
S_{I g 4}=\left(-\underline{U_{B}}-\left(Z_{R 2} \cdot \underline{I_{g 4}}\right) \cdot \underline{I_{g 4}}{ }^{*}=-52.8+291.6 j V A\right. \\
S_{\text {generators }}=S_{U g 1}+S_{I g 2}+S_{I g 3}+S_{I g 4}=2287.2+11087 j V A \\
S_{\text {generators }}=S_{\text {loads }}
\end{gathered}
$$

c) Thevenin equivalent

$$
\underline{U t h}=\underline{U_{A B}}=\underline{U_{A}}-\underline{U_{B}}=2.8-20.6 j \mathrm{~V}=20.7894_{-82.2597^{\circ}}
$$

We can obtain Thevenin impedance pasivizing the circuit and finding the equivalent impedance of the resulting net from terminals AB:

The equivalent impedance is:

$$
Z t h=Z_{C} \|\left(Z_{R 1}+Z_{L 2}\right)=\frac{Z_{C} \cdot\left(Z_{R 1}+Z_{L 2}\right)}{Z_{C}+Z_{R 1}+Z_{L 2}}=0.3-1.1 j \Omega=1.14_{-74.74^{\circ} \Omega}
$$

d) The resulting equivalent is:

The current supplied by the Thevenin source when the impedance is connected is

$$
\begin{gathered}
\underline{I}^{*}=\frac{S_{g t h}}{\underline{U_{t h}}}=\frac{50+150 j}{2.8-20.6 j}=-6.82-3.35 j \mathrm{~A} \\
\underline{I}=-6.82+3.35 \mathrm{j} \mathrm{~A}
\end{gathered}
$$

Voltage drop at Zload

$$
\underline{U}_{Z l o a d}=\underline{U}_{t h}-\underline{I} \cdot Z_{t h}=8.54-27.10 j V
$$

Then:

$$
Z_{l o a d}=\frac{\underline{U}_{Z l o a d}}{\underline{I}}=0.56+3.69 j \Omega
$$

