Electrical Power Engineering Fundamentals AC CIRCUITS (15 ${ }^{\text {th }}$ November 2019)

In the circuit below:
$u_{1}(t)=\sqrt{2} \cdot 1,25 \cdot \cos (100 t) V$
$u_{2}(t)=\sqrt{2} \cdot 10 \cdot \cos (100 t) V$
$i_{3}(t)=\sqrt{2} \cdot 8 \cdot \cos (100 t-90) \mathrm{A}$
$R 1=0.25 \Omega ; R 2=1 \Omega, L 1=2.5 \mathrm{mH} ; L 2=5 \mathrm{mH} ; C 1=0.05 \mathrm{~F} ; C 2=0.01 \mathrm{~F}$
a) Write the nodal equations for nodes A, B and C taking D as reference node. Express the equations as a matrix system. Solve the system and calculate the nodal voltages in phasor form
b) Calculate the complex power supplied by the voltage source ug1
c) Calculate the Thevenin's equivalent of the circuit at terminals C D including all the elements of the circuit in the equivalent. Draw the equivalent
d) Calculate the complex power absorbed by an impedance $Z_{\text {load }}=3+7 j$ connected between terminals C D.

