Electrical Power Engineering Fundamentals

Departamento de Ingeniería Eléctrica. Universidad Carlos III de Madrid
Module 4. Three-phase AC Systems. Week 10
Exercise 1. The following circuit shows a balanced three-phase load connected to an ideal balanced three-phase voltage source. (A, B, C) is a direct sequence. Find the current i and the power consumed by the load.
$\mathrm{U}_{\mathrm{BC}}=400\left\llcorner 30^{\circ} \mathrm{V}\right.$

Exercise 2. The following circuit shows 2 balanced three-phase loads connected to an ideal balanced three-phase voltage source. (A, B, C) is a direct sequence. Find: a) the current $I_{B} ; b$) the power consumed by load 2 ; c) the power generated by the three-phase voltage source.
$\mathrm{U}_{\mathrm{AB}}=400\left\llcorner 0^{\circ} \mathrm{V}\right.$

Figure 2. Three-phase AC system 2

Exercise 3. The following figure shows a balanced three-phase $A C$ system. (A, B, C) is a direct sequence. Find the impedance $\mathrm{Z}_{\mathrm{L} 1}$, knowing that the voltage $\mathrm{U}_{\mathrm{CA}}=400 \mathrm{~L}-210^{\circ} \mathrm{V}$ and the total power generated by the balanced three-phase voltage source $S_{3 v s}=60000+40000 j$ VA.

Figure 3. Three-phase AC system 3

Exercise 4. The following circuit shows 3 balanced three-phase loads connected to an ideal balanced three-phase voltage source. In the circuit, the load 3 is composed of 3 capacitors of 1 mF each that can be connected in Y or in Δ. Choose the connection to minimize the current I_{B}. Justify the choice.
$\mathrm{U}_{\mathrm{AB}}=400\left\llcorner 0^{\circ}\right.$
$\mathrm{f}=50 \mathrm{~Hz}$

Figure 4 Three-phase AC system 4

