Electrical Power Engineering Fundamentals

Departamento de Ingeniería Eléctrica. Universidad Carlos III de Madrid
Module 4. Three-phase AC Systems. Week 11
Exercise 1. The following circuit shows a balanced three-phase load connected to an ideal balanced three-phase voltage source. ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) is a direct sequence. Find the values R and X from the load, knowing the following measures: W1 $=63094 \mathrm{~W} ; \mathrm{W} 2=16906 \mathrm{~W} ; \mathrm{V}=400 \mathrm{~V}$

Figure 1 Three-phase AC system 1

Exercise 2. The following circuit shows 2 balanced three-phase loads connected to an ideal balanced three-phase voltage source. (A, B, C) is a direct sequence. The following measures are known: $\mathrm{W} 1=6154.7 \mathrm{~W}$; $\mathrm{W} 2=3845.3 \mathrm{~W}$; and $\mathrm{V}=400 \mathrm{~V}$. The frequency is $\mathrm{f}=50 \mathrm{~Hz}$.
a) Find the value of the impedance $Z 1$.
b) Find the power consumed by the load 2 .
c) In the circuit, we want to connect a balanced three-phase capacitor bank in parallel to minimize the current measured by the ammeter. Find the value of the phase-connected capacitor at Δ and Y connections.

Exercise 3. The following circuit shows a balanced three-phase AC system. (A, B, C) is a direct sequence. The following measures are known: W1 = 12309.4 W; W2 = 7690.6W; and V1 $=400 \mathrm{~V}$.
a) Find the value of the impedance ZL .
b) Find the current measured by the ammeter A and voltage measured by the voltmeter V2.

Figure 3. Three-phase AC system 3

