Electrical Power Engineering Fundamentals

Departamento de Ingeniería Eléctrica. Universidad Carlos III de Madrid
Module 4. Three-phase AC Systems. Week 9
Exercise 1. The following circuit shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find the current I_{C} and the voltage $\mathrm{U}_{\mathrm{B}^{\prime} C^{\prime} \text {. }}$
$\mathrm{U}_{\mathrm{AB}}=400\left\llcorner 0^{\circ} \mathrm{V}\right.$

Figure 1. Three-phase AC system 1

Solution: $\mathrm{I}_{\mathrm{C}}=27.21 \mathrm{~L} 45^{\circ} \mathrm{A} ; \mathrm{U}_{\mathrm{BC}}=333.24 \mathrm{~L}-120^{\circ} \mathrm{V}$

Exercise 2. The following circuit shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find: a) the currents $\mathrm{I}_{A^{\prime \prime}}$ and $\mathrm{I}_{C^{\prime}} ; \mathrm{b}$) the voltages $\mathrm{U}_{\mathrm{A}^{\prime}{ }^{\prime}}$ and $\mathrm{U}_{C^{\prime \prime}} \mathrm{N}$
$\mathrm{U}_{\mathrm{BC}}=400 \mathrm{~L} 30^{\circ} \mathrm{V}$

Figure 2. Three-phase AC system 2

[^0]Exercise 3. The following figure shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find the line voltage U_{BC} and the line current I_{B}, knowing that the voltage $\mathrm{U}_{\mathrm{A}^{\prime}{ }^{\prime}}=220\left\llcorner 0^{\circ} \mathrm{V}\right.$.

Figure 3. Three-phase AC system 3

Solution: $\mathrm{U}_{\mathrm{BC}}=262.38 \mathrm{~L}-118.15^{\circ} \mathrm{V} ; \mathrm{I}_{\mathrm{B}}=17.61 \mathrm{~L}-183.69^{\circ} \mathrm{A}$

Exercise 4. The following circuit shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find the voltage u 2 , knowing that the voltage $\mathrm{u} 1=100\left\llcorner 0^{\circ} \mathrm{V}\right.$.

Figure 4. Three-phase AC system 4

[^1]
[^0]: Solution: a) $\mathrm{I}_{A^{\prime \prime}}=14.867\left\llcorner 87.33^{\circ} \mathrm{A} ; \mathrm{I}^{\prime}=34.99\left\llcorner-163.98^{\circ} \mathrm{A} ;\right.\right.$ b) $\mathrm{U}_{A^{\prime} B^{\prime}}=218.5\left\llcorner 162.33^{\circ} \mathrm{V} ; \mathrm{U}_{C^{\prime}} \mathrm{N}=95.19\left\llcorner-101.33^{\circ} \mathrm{V}\right.\right.$

[^1]: Solution: $\mathrm{u} 2=136.93 \mathrm{~L} 78.44^{\circ} \mathrm{V}$

