Electrical Power Engineering Fundamentals

Departamento de Ingeniería Eléctrica. Universidad Carlos III de Madrid

Module 4. Three-phase AC Systems. Week 9

Exercise 1. The following circuit shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find the current I_C and the voltage $U_{B'C}$.

 $U_{AB}=400 \ \cup 0^{\circ} \ \vee$

Exercise 2. The following circuit shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find: a) the currents $I_{A"}$ and I_{C} ; b) the voltages $U_{A'B'}$ and $U_{C"N}$

 $U_{BC} = 400 \bigsqcup 30^{\rm o} \: {\rm V}$

Solution: a) $I_{A^{n}} = 14.867 \perp 87.33^{\circ} \text{ A}; I_{C} = 34.99 \perp -163.98^{\circ} \text{ A}; b) U_{A^{B^{*}}} = 218.5 \perp 162.33^{\circ} \text{ V}; U_{C^{n}} = 95.19 \perp -101.33^{\circ} \text{ V}$

Exercise 3. The following figure shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find the line voltage U_{BC} and the line current I_{B} , knowing that the voltage $U_{A'B'} = 220 \sqcup 0^{\circ} V$.

Figure 3. Three-phase AC system 3

Exercise 4. The following circuit shows a balanced three-phase AC system. (A, B, C) is a direct sequence. Find the voltage u2, knowing that the voltage u1 = $100 \perp 0^{\circ}$ V.

Figure 4. Three-phase AC system 4

Solution: u2 = 136.93 ∟ 78.44° V

Solution: $U_{BC} = 262.38 \bot -118.15^{\circ} V$; $I_B = 17.61 \bot -183.69^{\circ} A$