Electrical power engineering fundamentals

Partial exam. 25th November 2020

Instructions Solve the problems using the methods indicated in the problem statements and write a summary of your results in this paper. Only the solutions obtained with these methods will be graded.

Name

\qquad

DC Circuits

Given that the values of the parameters are $R_{1}=1 \Omega, R_{2}=2 \Omega, R_{3}=3 \Omega, R_{3}=3 \Omega, R_{4}=4 \Omega, i_{g 1}=1 A$, $i_{g 2}=2 A, u_{g 3}=3 V, i_{g 4}=4 A$

a) Apply nodal analysis to solve the circuit taking 4 as reference node. Write the nodal equations and solve them to find the node voltages (5 points)
b) Calculate the power delivered by ig4 (2 points)
c) Calculate the Thevenin equivalent between nodes 1 and 2 including all the elements of the circuit in the equivalent. Draw the equivalent indicating the values of the parameters (3 points)

Solution

a) Nodal equations:

$$
\begin{gathered}
-i_{g 1}+\frac{u_{1}-u_{3}}{R_{1}}+\frac{u_{1}-u_{2}}{R_{2}}=0 \\
\frac{u_{2}-u_{1}}{R_{2}}+i_{g 2}+i_{x}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{u_{3}-u_{1}}{R_{1}}-i_{x}+i_{g 4}+\frac{u_{3}}{R_{3}}=0 \\
u_{3}-u_{2}=u_{g 3}
\end{gathered}
$$

$$
u_{1}=-15.33 V \quad u_{2}=-18 V \quad u_{3}=-15 V \quad i_{x}=-0.67 A
$$

b) Power delivered by $i_{g 4}$

$$
\begin{gathered}
u_{g 4}=-u_{3}+u_{R 4}=15+16=31 \mathrm{~V} \\
p_{g 4}=u_{g 4} \cdot i_{g 4}=31 \cdot 4=124 \mathrm{~W}
\end{gathered}
$$

c) Thevenin equivalent:

$$
\begin{gathered}
u_{t h}=u_{1}-u_{2}=-15.33-(-18)=2.67 \mathrm{~V} \\
R_{t h}=R_{1} \| R_{2}=0.67 \Omega
\end{gathered}
$$

AC circuits

Given that the values of the parameters are $R_{1}=2, R_{2}=3, L=0.2 H, C=50 \mathrm{mF}$

$$
u_{g 1}(t)=\sqrt{2} \cdot 80 \cdot \cos 10 t V \quad u_{g 2}(t)=\sqrt{2} \cdot 50 \cdot \cos (10 t+90) V
$$

a) Solve the circuit using mesh analysis and calculate the branch currents of the circuit. Write the equations in matrix form and the phasors mesh currents below. (4 points)
b) Do a power balance of the circuit. Write a summary of your results (3 points)
c) If the DC source ug3 is connected between the terminals of R1. Calculate $u_{R 1}(t)$ and $i_{R 1}(t)$ with the polarities specified in the circuit. $u_{g 3}(t)=18 \mathrm{~V}$. (3 points)

Solution

a) Circuit in the frequency domain $\omega=10 \mathrm{rad} / \mathrm{s}$

$$
Z_{R 1}=2 \Omega \quad Z_{R 2}=3 \Omega \quad Z_{L}=2 j \Omega \quad Z_{C}=-2 j \Omega \quad \underline{\mathbf{U}}_{g 1}=80 V \quad \underline{\mathbf{U}}_{g 2}=50 j A
$$

Mesh equations:

$$
\begin{gathered}
\left(\begin{array}{cc}
Z_{L}+Z_{C}+Z_{L} & -Z_{L} \\
-Z_{L} & Z_{L}+Z_{R 1}+Z_{R 2}
\end{array}\right) \cdot\binom{\mathbf{I}_{1}}{\underline{I}_{2}}=\binom{-\underline{\mathbf{U}}_{g 1}}{-\underline{\mathbf{U}}_{g 2}} \\
\underline{\mathbf{I}}_{1}=-16+30 j=34 \angle 118.07 \mathrm{~A} \quad \underline{\mathbf{I}}_{2}=-16-10 j=18.87 \angle-148 \mathrm{~A}
\end{gathered}
$$

b) Power of loads

$$
\begin{gathered}
P_{R 1}=Z_{R 1} \cdot I_{2}^{2}=712 \mathrm{~W} \\
P_{R 2}=Z_{R 1} \cdot I_{2}^{2}=1068 \mathrm{~W} \\
Q_{L}=X_{L} \cdot I_{1}^{2}+X_{L} \cdot\left|\underline{\mathbf{I}}_{1}-\underline{\mathbf{I}}_{2}\right|^{2}=2312+3200=5512 \mathrm{var} \\
Q_{C}=X_{C} \cdot I_{1}^{2}=-2312 \mathrm{var} \\
S_{\text {loads }}=P_{R 1}+P_{R 2}+j \cdot\left(Q_{L}+Q_{C}\right)=1780+3200 j \mathrm{VA}
\end{gathered}
$$

Sources:

$$
\begin{gathered}
S_{g 1}=\underline{\mathbf{U}}_{g 1} \cdot\left(-\underline{\mathbf{I}}_{g 1}\right)^{*}=1280+2400 j V A \\
S_{g 2}=\underline{\mathbf{U}}_{g 2} \cdot\left(-\underline{\mathbf{I}}_{g 2}\right)^{*}=500+800 j V A \\
S_{\text {sources }}=S_{g 1}+S_{g 2}=1780+3200 j V A
\end{gathered}
$$

c) As $u_{g 3}$ is a DC source we should use superposition principle to analyse the response of the circuit to the sources of different frequencies.

First we turn off the source $u_{g 3}$ that becomes a short circuit. Then:

$$
u_{R 1}^{\prime}=0 \quad i_{R 1}^{\prime}=0
$$

Then we turn off sources $u_{g 1}$ and $u_{g 2}$ and calculate the response of the circuit to $u_{g 3}$

$$
u_{R 1}^{\prime \prime}=u_{g 3}=18 V \quad i_{R 1}^{\prime \prime}=-u_{R 1} / R 1=-9 A
$$

Response of the three sources acting simmulateously:

$$
u_{R 1}(t)=u_{R 1}^{\prime}+u_{R 1}^{\prime \prime}=18 V \quad i_{R 1}(t)=i_{R 1}^{\prime}+i_{R 1}^{\prime \prime}=-9 A
$$

