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Configuration of three-phase systems

I Most power systems are three-phase.

I Each part of the system is called phase

Generator Load

Transmission line



Three phase generators

Three phase generators generate three sinusoidal voltages of
the same amplitude and phase shift 120o
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Generators in wye and delta

We represent three-phase generators as three AC sources
connected in wye or delta
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Positive and negative phase sequence
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Positive sequence Negative sequence

Ua = U∠0o

Ub = U∠−120o

Uc = U∠120o

Ua = U∠0o

Ub = U∠120o

Uc = U∠−120o



Three-phase loads

I Three-phase loads are represented in the frequency domain, as
a set of three impedances connected between them.

I We limit our analysis to balanced systems in which the
impedance connected to each phase has the same value

I Loads can be connected in wye or delta
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Balanced wye-wye system systems

In wye wye systems the neutral points of the generators and the
loads might be connected by means of a neutral wire.
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IN=Ia+Ib+Ic 

Ua 

Ub Uc 

The current of each phase flows from the generator towards the
load and returns through the neutral wire



Currents in a balanced wye-wye system
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The currents also form a three phase system. If ZY = |ZY |∠θ
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Current through the neutral wire

As the current flowing through the neutral is zero the wire is
often suppressed.

IN = Ia + Ib + Ic =
U

ZY
· (1∠0 + 1∠− 120o + 1∠120o) = 0
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Savings of three-phase system

I Lower material investment

I Lower line losses for the same power transfer



Line and phase voltages and currents

I Phase-voltage: Voltage drop across a single phase of the
generator or the load. The phase-voltage of the generator is
the voltage drop across the terminals of one of the ideal
voltage sources; the phase voltage of the load is the voltage
drop across one of the impedances that constitutes the load.

I Line-votage: Voltage drop between any couple of lines. We
could obtain the line voltage at the generator side of the
system, or the line voltage at the load side.

I Phase current: Current in a single phase, i.e current flowing
through one of the ideal sources or through one of the
impedances.

I Line current: Current in a single line



Line and phase voltages and currents
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Relation between the line and phase magnitudes in a
wye-wye system

Relation between the line and phase voltages:

IL = IPh

Relation between the line and phase voltages:

UPha = Ua UPhb = Ub UPhc = Uc

ULa = Ua−Ub = U∠0−U∠−120o =
√

3·U∠30o =
√

3·UPha∠30o

ULb = UBC = Ub −Uc =
√

3 ·UPhb∠30o

ULc = UCA = Uc −Ua =
√

3 ·UPhc∠30o



Relation between the line and phase magnitudes in a
wye-wye system
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The line voltages are
√

3 times larger that the phase voltages and
lead the phase voltages by 30o



Relation between the line and phase magnitudes in a
delta-delta system
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Relation between the line and phase magnitudes in a
delta-delta system

Phase and line voltages:

ULINE = UPHASE

Phase currents:

IPha = IB′C ′ =
Ua

Z∆
=
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Z∆

IPhb = IA′B′ =
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Z∆
=
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IPhc = IC ′A′ =
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Z∆
=
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Z∆



Relation between the line and phase magnitudes in a
delta-delta system

Line currents:

ILa = IPha−IPhb =
U∠0

Z∆
−U∠−120o

Z∆
=
√

3· U
Z∆

∠−30o =
√

3·IPha∠−30o

ILb =
√

3 · IPhb∠−30o

ILc =
√

3 · IPhc∠−30o

The line currents are
√

3 times larger that the phase
currents and lag the phase currents by 30o



Summary
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Analysis of three-phase systems: one-phase equivalent
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−Ua + Ia · (ZTL + ZY ) + (Ia + Ib + Ic) · ZN = 0

−Ub + Ib · (ZTL + ZY ) + (Ia + Ib + Ic) · ZN = 0

−Uc + Ic · (ZTL + ZY ) + (Ia + Ib + Ic) · ZN = 0



Analysis of three-phase circuits
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As there is no current flow
through the neutral wire, the
three phases can be analysed as
independent circuits

−Ua + Ia · (ZTL + ZY ) = 0

−Ub + Ib · (ZTL + ZY ) = 0

−Uc + Ic · (ZTL + ZY ) = 0



One phase equivalent of a three-phase circuit

I We represent the circuit with a one-phase equivalent.

I As the system is balanced the electric magnitudes of the three
phases have the same amplitude and a known phase shift
(120o).

I The behaviour of the whole system could be derived from the
analysis of the so called one-phase equivalent or
phase-neutral equivalent of the system.
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Analysis of circuits with delta-connected elements

I In systems with a delta-connected load or a delta-connected
generator, it is not possible to apply the one-phase equivalent
approach directly, since there is no neutral point.

I However it is possible to apply a wye delta transformation to
obtain a YY connected system equivalent to the original.

I In Y∆ or ∆∆ or ∆Y systems:

1. The system is transformed into a YY equivalent system.

2. The one-phase equivalent approach is applied over the YY
equivalent circuit.



∆Y transformation for delta-connected generators

∆ connected generators can be redrawn as equivalent Y
connected generators:
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The two configurations are equivalent if:

ULY = UL∆



∆Y transformation for three delta-connected impedances

We want to find the value of ZY that makes the two loads
equivalent
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The loads are equivalent if for the same applied line voltages
the line currents are the same (i.e: UAB∆ = UABY => IA∆ = IAY )



∆Y transformation for three delta-connected impedances

The behaviour in the three phases is the same except that there
is a phase shift of 120o . We analyse phase A:

IA∆ =
√

3 · IPhA∠−30o =
UAB ·

√
3∠−30o

Z∆

IAY = IPhA =
UAB/

√
3∠30o

ZY

What value of impedance ZY verifies the identity IA∆ = IAY ?:

UAB ·
√

3∠−30o

Z∆
=

UAB/
√

3∠30o

ZY
=> ZY =

Z∆

3
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Z∆
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Instantaneous power

The instantaneous power of three phase systems is constant∗:

p(t) = ua(t) · ia(t) + ub(t) · ib(t) + uc(t) · ic(t) = 3 · U · I · cosϕ

As power is constant the vibrations in the axles of three phase
motors and generators are smaller that those in one-phase devices
what makes them more stable from the mechanical point of view.

ua(t) =
√

2 · U · cos(ωt)

ub(t) =
√

2 · U · cos(ωt − 120o)

uc(t) =
√

2 · U · cos(ωt + 120o)

ia(t) =
√

2 · I · cos(ωt − ϕ)

ib(t) =
√

2 · I · cos(ωt−120o−ϕ)

ic(t) =
√

2 · I · cos(ωt + 120o−ϕ)

∗Read the demonstration in the long notes



Active and reactive power of a three-phase wye load
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Active and reactive power of a three-phase delta load
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Complex power of three-phase generators
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Power factor

Power factor: p.f . = cosϕ
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Q ϕ cosϕ character
Resistive loads 0 0 1 -
Inductive loads > 0 > 0 0 < p.f < 1 lagging or inductive

Capacitive loads < 0 < 0 0 < p.f < 1 leading or capacitive



Reactive power compensation

I Many real-life loads, as electric motors, are highly inductive
and often operation of power systems electric systems involves
high amounts of reactive power transferred from the
generators towards the loads.

I Fluctuating power increases the current flowing through the
lines increasing losses and giving rise to voltage drops.

I Electric companies penalize the costumers that consume
power with poor power factor.

Inductive load
P, Q

ZTL

Generator

P, Q



Reactive power compensation

Banks of capacitors are connected in parallel with the loads, to
compensate part of the reactive power absorbed by them.

Inductive load
P, Q

ZTL

Generator

P, Q'

Capacitors
QC



Reactive power compensation

I Capacitors do not absorb or deliver any active power, so the
active power of the system remains unchanged. QC < 0

I The relation between the active an reactive power changes
and the angle ϕ′ becomes smaller.

I The power factor becomes closer to 1

S
Q

P

� S'
Q

P'=P
QC

Q'=Q+QC�'

Initial system System with capacitors

Q ′ = Q + QC



Reactive power of a capacitor

A capacitor of capacitance C, a voltage drop U = U∠ϕu and
current flow I = I∠ϕi

ZC=-j/�C

UI
+ -

QC = XC · I 2 =
U2

XC
= −ω · C · U2

PC = 0



Reactive power of a bank of capacitors in wye

Inductive load
P, Q

ZTL

Generator
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QCY = −3 · ω · CY ·
2

UPh︸︷︷︸
UL/
√

3

= −ω · CY · U2
L



Reactive power of a bank of capacitors in delta
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Capacitance required to get a target power factor

We want to compensate the reactive power of a system working
with power factor cosϕ so that the power factor becomes cosϕ′

Q

P'=P
QC

Q'=Q+QC
�
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Q = P·tanϕ Q ′ = P·tanϕ′ QC = Q−Q ′ = P·(tanϕ−tanϕ′)

C∆ =
P · (tanϕ− tanϕ′)

3 · ω · U2
L

CY =
P · (tanϕ− tanϕ′)

ω · U2
L



Measure of power: working principle of wattmeters

A wattmeter is a measuring device that provides information on
the power absorbed by electric dipoles.

Wattmeters incorporate two measuring circuits: the current coil
and the voltage coil.

A sign * marks the terminals of the current and voltage coils of
the same polarity
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Electric 
dipole W = IA · UAB · cos(ÛAB IA)



Measure of the active power in systems with accessible
neutral point
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W = IA · UAN · cos(ÛAN IA) = UPh · IPh · cosϕ =
P
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Measure of the reactive power of a three-phase system
with one wattmeter
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W = UBC · IA · cos(ÛBC IA)



Angle ÛBC IA
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Measure of the reactive power of a three-phase system
with one wattmeter
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W = UL·IL·cos(ÛBC IA) = UL·IA·cos(90−ϕ) = UL·IA·sin(ϕ) =
Q√
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The two wattmeters method

Balanced
three-phase

 load
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W1 = UAC · IA · cos(ÛAC IA)

W2 = UBC · IB · cos(ÛBC IB)



Angles ÛAC IA and ÛBC IB
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The two wattmeters method

W1 = UL·IL·cos(ÛAC IA) = UL·IL·cos(30−ϕ) = UL·IL·(
√

3

2
cosϕ+

1

2
·sinϕ)

W2 = UL·IL·cos(ÛBC IB) = UL·IL·cos(30+ϕ) = UL·IL·(
√

3

2
cosϕ−1

2
·sinϕ)

The active and reactive power of the three phase system can be
obtained as the sum and the difference of the measures of the two
wattmeters.

W1 + W2 =
√

3 · UL · IL · cosϕ = P

W1 −W2 = ·UL · IL · sinϕ =
Q√

3
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