ELECTRICAL POWER ENGINEERING FUNDAMENTALS

FINAL EXAM. ORDINARY CALL (January 10 ${ }^{\text {th }}, 2020$)

Exercise 1

For the circuit below:
a) Write the equations for the mesh analysis
b) Knowing that the power delivered by the voltage source is 0 , calculate ig
c) Calculate the Thevenin's equivalent of the circuit between B and D including all the elements of the circuit in it except the current source ig.

Solution

a) Mesh equations:

Mesh1: i1=2A
Mesh 2: $-2+(i 2-i 1)+u x=0$
Mesh 3: -ux+(i3-i1)+i3=0
Additional equation: i3-i2=ig
b) Since the voltage source do not supply power $i 2=0$. Then the mesh equations can be simplified to:
$i 1=2 A$
$-2-i 1+u x=0$
$-u x+2 i 3-i 1=0$
i3 $=\mathrm{ig}$
Summing equations 2 and 3 :
$-2-i 1+2 i 3-i 1=0=>2 i 3-6=0=>i 3=i g=3 A$
d) We need to remove the source ig from the circuit to calculate Thevenin's equivalent.
$u t h=u_{B D}$ in the resulting circuit.
Applying mesh analysis:
$i 1=2 A$
$2(i 2-i 1)+i 2-2=0$
Solving
$3 i 2-2 i 1-2=0=>i 2=2 A ;$
The current flowing from A to C is 0 ; uth $=u_{B D}=u_{C D}=2 V$
To calculate Rth we passivize the circuit and calculate R th $=\operatorname{Req}_{c D}=(1+1)| | 1=2 / 3$?

Exercise 2

In the circuit below:

$$
\begin{aligned}
& u_{1}(t)=\sqrt{2} \cdot 10 \cdot \cos (100 t) V \\
& u_{2}(t)=\sqrt{2} \cdot 5 \cdot \cos (100 t+90) V \\
& i_{3}(t)=\sqrt{2} \cdot 10 \cdot \cos (100 t+30) \mathrm{A} \\
& R=5 \Omega ; L=5 \mathrm{mH} ; C=5 \mathrm{mF}
\end{aligned}
$$

a) Apply nodal analysis to find the nodal voltages $u_{A}(t)$ and $u_{B}(t)$
b) Do a power balance of the circuit
c) We want to add a current source to the circuit, connected between terminals A and B, so that the voltage drop across the resistor R (+ up - down) becomes:
$u_{R}(t)=25+\sqrt{2} \cdot 7 \cdot \cos (100 t-48) A$
Determine the instantaneous value and the polarity of the source.

Solution

a) Circuit in the frequency domain:

Nodal equations:
(To obtain the equations we could redraw the voltage sources as current sources or find the voltage drop across the impedances that are in series with them)

$$
\begin{aligned}
& \frac{U_{A}-10}{-2 j}+\frac{U_{A}}{0.5 j}+\frac{U_{A}-U_{B}}{-2 j}=0 \\
& \frac{U_{B}+5 j}{5}-10 / 30+\frac{U_{B}-U_{A}}{-2 j}=0 \\
& \left(\begin{array}{cc}
\frac{1}{-2 j}+\frac{1}{-2 j}+\frac{1}{0.5 j} & \frac{1}{2 j} \\
\frac{1}{2 j} & \frac{1}{-2 j}+\frac{1}{5}
\end{array}\right)\binom{U A}{U B}=\binom{5 j}{10 / 30-j}
\end{aligned}
$$

Solving:
$\underline{U A}=-7.371+5.14 j=8.9869 / 145.10 V$
$\underline{U B}=4.74-10.28 \mathrm{j}=11.32 /-65.24 \mathrm{~V}$
a) Power balance

Branch currents:
$\underline{1} 1=(10-\underline{U} A) /(-2 \mathrm{j})=2.57+8.68 \mathrm{j}=9.06 / 73.51 \mathrm{~A}$
$\underline{1} 2=(\underline{U A}-\underline{U B}) /(-2 \mathrm{j})=-7.7119-6.0565 \mathrm{j}=9.81 /-141.86$
$\underline{1} 3=\mathrm{i} 3=(u b+5 \mathrm{j}) / 5=0.95-1.06 \mathrm{j}=1.41 /-48.09 \mathrm{~A}$
$\underline{1} 4=U A / 0.5 j=10.28+14.74 j=17.97 / 55.10 A$

Power absorbed by the passive elements
$P R=R \cdot 13^{2}=10.08 \mathrm{~W}$
$\mathrm{QL}=\mathrm{XL}{ }^{*} \mid 4^{2}=161.53 \mathrm{var}$
$Q C=X C * I 2^{2}+X C * I 1^{2}=-356.40$ var

Spower generated by the sources:

Sg1=Ug1•I1*=25.71-86.86j VA
$\mathrm{Sg} 2=\underline{\mathrm{U}} \mathrm{g} 2 \cdot \underline{1} 3^{*}=-5.28+4.74 \mathrm{j} \mathrm{VA}$
$\mathrm{Sg} 3=\mathrm{UB} \cdot 12^{*}=-10.35-112.76 \mathrm{j}$ VA

Power balance:
$S T g=S g 1+S g 2+S g 3=10.08-194.87 \mathrm{j}$ VA $=$ S abs passive
d) Applying the superposition principle we find that in order to obtain
$u_{R}(t)=25+\sqrt{2} \cdot 7 \cdot \cos (100 t-48) A$

We should connect a DC current source of 5A with polarity arrow to the right.

Exercise 3

The following diagram represents a three-phase system wich supplies energy to two three-phase loads. Load 1 is Y connected and Load 2 is Δ connected. The impedance per phase of each load is indicated in the diagram. The loads are connected to a generator by means of a distribution line with impedance $Z_{\mathrm{DL}}=3+j \Omega$.

The phasor line voltage at the load end of the system has a constant value $\underline{U a^{\prime} b^{\prime}}=380 / 30^{\circ} \mathrm{V}$.
a) Draw the one-phase equivalent of the system.
b) Determine the measure of the ammeter
c) Determine the modulus of the line voltage at the generator
d) Calculate the active and reactive power absorbed by load 1 and load 2, the power factor of each load and the power factor of the set formed by the two loads.
e) Calculate the measure of the wattmeter

a) One phase equivalent

$Z_{2 Y}=3-4 j \Omega$
Ua'n=380/sqrt(3) $=219.39$ /0 V
b) To calculate the line current we can associate the two impedances in parallel $Z e q=\left(Z_{1 Y} * Z_{2 \gamma}\right) /\left(Z_{1 Y}+Z_{2 Y}\right)=5.0442-3.2856 j=6.01 /-33.05 \Omega$
$\underline{I} a=\underline{U} a^{\prime} n /$ Zeq $=30.54+19.89 \mathrm{j}=36.44 \angle 33.07 \mathrm{~A}$

The ammeter measures 36.44 A

Alternatively we could calculate the current flowing through each impedance and sum them to get the total line current:

I1 $=\underline{U} a^{\prime} n / Z_{1 y}=4.07 /-21.80 \mathrm{~A}$
I2 $2=\underline{U} a^{\prime} n / Z_{2 Y}=34.26 \angle 38.66 ~ A$
$\underline{l} a=\underline{\underline{l}} 1+\underline{1} 2=36.44 \angle 33.07 \mathrm{~A}$
c) $\underline{U} a n=\underline{U} a^{\prime} n+\left(Z_{D} \cdot \cdot \underline{l} a\right)=291.12+90.21 \mathrm{j} V=304.76 / 17.22 \mathrm{~V}$
$\mathrm{ULg}=\operatorname{sqrt}(3) \cdot 304.76=527.88 \mathrm{~V}$
d) $\mathrm{P} 1=3 \cdot \mathrm{R} 1 \cdot|\mathrm{I} 1|^{2}=2484.73 \mathrm{~W}$

Q1=3. X1 $\cdot|I 1|^{2}=993.89$ var
pf1 $=0.93$ ind
(The pf can be calculated with the power triangle, the impedance triangle or the phase shift between the current and voltage)
$12 \mathrm{ph}=\mathrm{I} 2 / \mathrm{sqrt}(3)=19.78 \mathrm{~A}$
$\mathrm{P} 2=\left.3 \cdot \mathrm{R} 2 \cdot| | 2 \mathrm{ph}\right|^{2}=17606.2 \mathrm{~W}$
Q2=3 $\cdot \mathrm{X} 2 \cdot|12 \mathrm{ph}|^{2}=-14084 \mathrm{var}$
Pf2 $=0.78 \mathrm{cap}$
The pf load 1+load 2 can be calculated with the total power, the equivalent impedance or the angle between la and Ua'n
pf load1 and load $2=0.84$ cap
e) The Wattmeter is measuring the reactive power of the system divided by sqrt(3)
$\mathrm{W}=\mathrm{Ib} \cdot \mathrm{Uac} \cdot \cos (\underline{\mathrm{U}} \mathrm{ab} \underline{\mathrm{I}} \mathrm{c})=\mathrm{IL} \cdot \mathrm{ULg} \cdot \cos (90-\varphi)=\mathrm{IL} \cdot \mathrm{ULg} \cdot \sin (\mathrm{fi})=\mathrm{QT} / \operatorname{sqrt}(3)=$
$=(Q 1+Q 2+Q D L) / s q r t(3)=-9107.43 / \operatorname{sqrt}(3)=-5249.67 \mathrm{~W}$
$Q_{D L}=3 \cdot X_{D L} \cdot \mathrm{Ia}^{2}=3983.62 \mathrm{var}$

Alternatively:
$\varphi=\varphi \underline{U_{a n}}-\varphi_{\underline{1}}=17.22-33.07=-15.85$
$W=527.88 \cdot 36.44 \cdot \cos (90+15.85)=-5253.72 W$

