Electrical Power Engineering Fundamentals DC Exam (18th October 2019)

- a) Solve the circuit below using mesh analysis and provide a circuit diagram showing the value and direction of the currents that flow through each branch
- b) Calculate the power balance of the circuit
- c) Calculate Thevenin's equivalent of the circuit between terminals BD including all the elements of the circuit in the equivalent
- d) Using the results of part c calculate the resistor that connected between B and D extracts the maximum amount of power from the circuit and calculate the power absorbed by the resistor.

Mesh equations:

Mesh 1: i1 = 2A

Mesh 2: ux+2· (i2-i3)+3·i2=0 Mesh 3: 2·(i3-i1)+8+2·(i3-i2)=0 Ad eq: i1-i2=3

Solving i1= 2A; i2=-1A; i3=-3/2 A; ux=2V

Branch currents:

 i_{AC} = 2A i_{BA} =3A i_{AD} = 1A i_{CB} = 7/2 A i_{DC} =3/2A

b) P_R=∑ R.i²= 44W

 p_{8V} = 8· 3/2= 12 W DELIVERED p_{3A} = 3·2= 6 W DELIVERED p_{2A} =ux2·2 = 13·2=2 W DELIVERED

To calculate ux2 we apply 2KL to mesh 1: -ux2+4·2+2·7/2-ux=0 ux2=13V

 $p_g = p_{8V} + p_{3A} + p_{2A} = 44W = p_R$

c) $u_{th=}u_B-u_D=2\cdot 1/2=1V$

Passivizing the circuit we find that: R_{th}=2||2 = 1 Ω

Alterative: Place a short-circuit between B and D and calculate isc=1A

Rth=uth/isc= 1 Ω

d) The R that absorbs maximum power is R= R_th= 1 Ω

Conecting R to the Thevenin's equivalent:

i=uth/(R+Rth)= 1/2 A

 $P=R \cdot i^2 = 1/4 W$