

Unit 2. Advanced CMOS device modeling

System-on-Chip and efficient electronic circuit integration techniques

Carlos III University of Madrid, Spain Electronics Technology Department

- **1. Introduction to mixed-signal microelectronics**
- 2. MOSFET devices
- **3. Features extraction**
- 4. Transistor bandwidth (BW)
- 5. General tips for analog design

1. Introduction to mixedsignal microelectronics

- Currently, most of the signal processing is computed with digital circuits.
- Since the 80s billions of transistors integrated on a single chip are able to perform billions of operations per second.

Universidad

Carlos III de Madrid

uc3m

- Advantages of digital signal processing:
 - Design simplicity.
 - Automatic design tools available.
 - Higher noise robustness.
 - > Compact circuits.
- Disadvantages of digital signal processing:
 - Limited resolution.
 - Discrete operation.
- Why do we need then mixed-signal circuits?
 - Signal processing with sensors:

1. Introduction to mixedsignal microelectronics

uc3m Universidad Carlos III de Madrid

- Why do we need then mixed-signal circuits?
 - Digital control of actuators.

- > Digital communications: DAC for transmitter and ADC for receiver.
- Radioreceivers:

1. Introduction to mixedsignal microelectronics

- Why do we use MOSFET design nodes?
 - Patented by Liliendeld in the 30's.
 - > They have been intensively used **since the 60's**.
 - CMOS-based digital design: only dynamic power consumption (logic transitions) and less area. Lower manufacturing costs and higher scalability.
 - CMOS-based analog design: high speed and less noisy than BJT nodes. Lower intrinsic gain, but higher input impedance. High scalability has enabled operating frequencies similar to BJT-based architectures.
 - > In the narrowest nodes the parasitic resistances and capacitors become more limiting.

Year	1999	2001	2004	2008	2011	2014
Tech.Nod e (nm)	180	130	90	60	40	30
Supply (V)	1.5- 1.8	1.2- 1.5	0.9- 1.2	0.6- 0.9	0.5- 0.6	0.3- 0.6
Wiring levels	6-7	7	8	9	9-10	10
Max. Frequenc y (GHz)	1.2	2.1	3.5	7.1	11	14.9

Universidad

Carlos III de Madrid

uc3m

Data source:

International Technology Roadmap for Semiconductors

• NMOS basic structure:

BY NC SA

Universidad

Carlos III de Madrid

uc3m

p-substrate

Inverted region

p-substrate

Depleted region

m

0.1 V

• Operating performance:

• Operating performance:

Now we keep V_{GS} > V_{th} and increase V_{DS} ...

uc3m |

is accomplished especially for low $V_{\text{DS}}.$

A transistor may work as a voltage-controlled resistor.

Universidad

Carlos III de Madrid

Inverted region

• ... we get into the saturation region.

 C_{ox} : oxide capacitance

 $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{3,97\varepsilon_o}{t_{ox}}$

$$I_{\rm D} = C_{\rm ox} \mu_{\rm n} \frac{W}{2L} (V_{\rm GS} - V_{\rm th})^2$$

- \succ **Ideally**, the current does not depend on V_{DS}.
- The transistor operates as a voltage-controlled current source.

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = C_{ox} \mu_n \frac{W}{L} (V_{GS} - V_{th}) = \sqrt{2C_{ox} \mu_n \frac{W}{L} I_D}$$

 $\epsilon_o = 8,85 aF/um$:vacuum dielectric constant

 t_{ox} :oxide thickness (node dependent)

 μ_n , μ_n :effective mobility of charge carriers

$$\mu_{\rm n} = 660 \frac{cm^2}{V \cdot s}$$
 $\mu_{\rm p} = 210 \frac{cm^2}{V \cdot s}$ \longrightarrow g_m in NMOS higher than in PMOS

Universidad Carlos III de Madrid

- Second order effects:
 - Body effect: Which should be the bulk voltage?

Bulk voltage modifies V_{th}.

$$V_{th} = V_{tho} + \gamma \left(\sqrt{|2\Phi_F + V_{SB}|} - \sqrt{|2\Phi_F|} \right)$$

Node dependent

 $\gamma\,$ between 0.3 y 0.4 $V^{1/2}$

> Channel modulation: due to $I_D - V_{DS}$ dependence.

$$I_{\rm D} = C_{\rm ox} \mu_{\rm n} \frac{W}{2L} (V_{\rm GS} - V_{\rm th})^2 (1 + \lambda V_{\rm DS})$$

Channel modulation coefficient, it represents the relative variation of the channel length when V_{DS} increases:

- L high (250 nm) $\rightarrow \lambda$ high.
- L low (40nm) $\rightarrow \lambda$ low.

$$\lambda \propto {}^1\!/_L$$

12

Second order effects:

> Channel modulation:

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = C_{ox} \mu_n \frac{W}{L} (V_{GS} - V_{th}) (1 + \lambda V_{DS})$$
$$= \sqrt{2C_{ox} \mu_n \frac{W}{L} I_D (1 + \lambda V_{DS})}$$

uc3m

An additional term is added to g_m .

Universidad

Carlos III de Madrid

Subthreshold region,
 <u>Weak inversion:</u>

g_m higher than in saturation!!

- ➢ If V_{GS}<V_{th} → weak depleted region → small current proportional to V_{GS} flows.
- > If V_{DS} >200 mV, current follows an exponential function:

$$I_D \approx I_{D0} \frac{W}{L} e^{V_{GS}} /_{n(kT/q)} \qquad I_{D0} \text{ depends on the process}$$
$$g_m = \frac{I_D}{n(kT/q)} \qquad 1 < n < 3$$

• Internal capacitances:

Capacitances depend on the operating region.

Capacitance	Off	Linear	Saturation
C _{GS}	C _{ov} ·W	0,5⋅C _{ox} ⋅W⋅L	(2/3)·C _{ox} ·W·L
C _{GD}	C _{ov} ·W	0,5·C _{ox} ·W·L	C _{ov} ⋅W
C _{GB}	C _{ox} ·W·L	CGBO·L	CGBO·L
C _{DB}	C _{jd}	C _{jd}	C _{jd}
C _{SB}	C _{js}	C _{js}	C _{js}

-

• Small signal model in saturation:

Resistance due to channel modulation.

$$r_{o} = \frac{\partial V_{DS}}{\partial I_{D}} \approx \frac{1}{\lambda I_{D}} = \frac{2L}{\lambda C_{ox} \mu_{n} W V_{DS,sat}^{2}} \qquad \lambda \propto \frac{1}{L} \qquad r_{o} \propto \frac{L^{2}}{V_{DS,sat}^{2}}$$
Voltage gain: $A_{V} = -g_{m} r_{o} = -\frac{2}{\lambda (V_{GS} - V_{T})}$ (no body-effect included)

For frequency response analysis we would need to include internal capacitances.

uc3m Universidad Carlos III de Madrid

• Operating regions:

- PMOS:
 - > All the phenomena previously described apply similar in PMOS.
 - All the equations remain modifying the polarity of the voltages/currents and considering that the current is due to positive charges.

Universidad **Carlos III** de Madrid

uc3m

$$I_{D} = C_{ox} \mu_{p} \frac{W}{2L} (V_{SG} - |V_{th}|)^{2} (1 + \lambda V_{SD}) \qquad G \bullet - V_{sg} + g_{m} V_{sg} \uparrow G \bullet S$$

$$I_{D} \approx I_{D0} \frac{W}{L} e^{V_{SG}} / n(kT/q) \qquad B \bullet - P_{M} = P_{M} = P_{M} + P_{M} = P_{M} + P_{M} + P_{M} = P_{M} + P_{$$

3. Features extraction

• Simulations performed in LTSpice: 1um node.

3. Features extraction

$$I_{\rm D} = C_{\rm ox} \mu_{\rm n} \frac{W}{2L} (V_{\rm GS} - V_{\rm th})^2$$

3. Features extraction

• Simulations performed in LTSpice:

What about if we use a narrow process? \rightarrow L = 50 nm

Universidad **Carlos III** de Madrid

uc3m

4. Transistor bandwidth (BW)

-GD

•GS

 V_{DD}

uc3m

The lower L, the faster the device and the lower the output resistance.

Universidad

Carlos III de Madrid

- V_{DS,sat} high → they are faster but the get into the linear region easily.
- NMOS faster than PMOS.
- Switching frequency

$$GBW \propto \frac{V_{DS,sat}}{L}$$

Short channel devices

ΠΠ

g

 \mathbf{V}_{g}

 V_{GG}

$$f_T \propto \frac{V_{GS} - V_T}{L^2}$$

> L_{min} > 100 nm → high gain.
 > L_{min} < 100 nm → high speed.

S

5. General tips for analog design

- Trade-off between bandwidth and gain $\rightarrow L \ge 2L_{min}$.
- Rule of thumb \rightarrow V_{DS,sat} = 5% of V_{DD}.
- The real performance of transistors is more complex than the behavior described by equations. In general a designer uses equations to propose a first design to be refined afterwards by simulations.
 - The equations provide more accurate results for large technologies.
 - For low voltage and narrow technologies (< 50nm) the equations are more complex.
- CAD tools are used extensively.
- CMOS device (long channel)

CMOS device (short channel)

uc3m

Universidad

Carlos III de Madrid

Bibliography

- Allen, P. E., & Holberg, D. R. (2002). CMOS analog circuit design. New York: Oxford University Press.
- R. Jacob Baker. 2010. CMOS Circuit Design, Layout, and Simulation (3rd. ed.). Wiley-IEEE Press.

Simulations are performed through software LTSPice, provided courtesy of <u>Analog Devices</u> and authored by <u>Mike Engelhardt</u>.

Spice models of transistors come from <u>http://cmosedu.com/</u>, website maintained by <u>R. Jacob</u> <u>Baker</u>.