

Unit 3. Analog CMOS fundamental circuits

System-on-Chip and efficient electronic circuit integration techniques

Carlos III University of Madrid, Spain Electronics Technology Department

- **1.** Current sinks/sources
- **2. Current mirrors**
- **3. Examples of current mirrors**
- 4. Switches and active resistors
- **5.** References of currents and voltages

Current sink

Universidad **Carlos III** de Madrid

1. Current sinks/sources

How to increase the output resistance?

 $r_{out} \approx g_m r_{ds} R$

 $r_{out} \approx g_{m2} r_{ds2} r_{ds1}$

Basic structure:

$$i_{out} = \frac{W/L|_{M2}}{W/L|_{M1}} I_{in}$$
 $r_{out} = r_{ds2}$

- A current mirror takes the current from one branch (I_{in}) and copies it into the other one (i_{out}) considering the size ratio between M₁ and M₂.
- Error sources in the ratio iout/lin:
 - Channel modulation:

$$\frac{i_{out}}{I_{in}} = \frac{W/_L|_{M2}}{W/_L|_{M1}} \cdot \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}$$

- Different V_{DS} will suppose different current ratio
 - Short channel devices \rightarrow higher error.
- Solution? \rightarrow Increasing r_{out}.

TAT .

 \geq

- Error sources in the ratio i_{out}/I_{in} :
 - V_T variation:
 - Two devices placed close in layout \rightarrow maximum V_T variation of 10 mV.
 - Oxide gradients may suppose variations in the μC_{ox} product.

$$\frac{i_{out}}{I_{in}} = \frac{W/_L|_{M2}}{W/_L|_{M1}} \cdot \left[\frac{V_{GS} - V_{th2}}{V_{GS} - V_{th1}} \right]^2$$
Error term

- The higher the current I_{in} the lower the error.
- Aspect ratio between the devices in layout:
 - For W and L > 10 μ m \rightarrow error negligible.
 - Symmetric designs interleaving devices minimize differences in the aspect ratio.

- How to increase the output resistance?
 - Current mirror with cascode: $r_{out} = r_{ds2} + r_{ds4} + g_{m4}r_{ds4}r_{ds2}$

Current mirror with cascode and higher V_{out} variation possible:

- How to increase the output resistance?
 - Wilson current mirror:
- or: $r_{out} \approx r_{ds3} + r_{ds2} \frac{1 + r_{ds3}g_{m3} + g_{m1}r_{ds1}g_{m3}r_{ds3}}{1 + g_{m2}r_{ds2}}$

• Degenerated current mirror: $r_{out} \approx g_{m2} r_{ds2} R_o$

Higher output swing because we have one single device at the output stage.

• Regulated current mirror:

 $r_{out} \approx g_{m1}g_{m3}r_{ds1}r_{ds2}r_{ds3}$

$$r_{out} \approx g_{m3}(1+A)r_{ds3}r_{ds2}$$

• Degenerated current mirror: $r_{out} \approx g_{m2} r_{ds2} R_o$

Higher output swing because we have one single device at the output stage.

Tips for current mirror design:

- \succ Increasing output resistance r_{out}.
- The higher the current the less error due to VT.
- > The bigger the devices the less error due to aspect ratio.
- \succ Longer L \rightarrow less error due to channel modulation.
- > To minimize the error due to $VT \rightarrow$ multiple W/L aspect ratios.
- Symmetric layout designs.

Universidad

Carlos III de Madrid

The lower the current the lower the required V_{ON}

uc3m | Universidad Carlos III de Madrid

(cc

$$V_{min} = 2*V_{ON} = 0.24 V$$

Universidad

Carlos III de Madrid

Plot Is(m1) and Is(m2)

Universidad

Carlos III de Madrid

I_{ref}=20 μA

.include cmosedu_models.txt

All transistors has the same size, and therefore the same V_T and $V_{DS,sat} \rightarrow V_{GSi} = V_{DS,sat} + V_T$ $V_{G3} = V_{G4} = V_{GS3} + V_{GS1} = 2V_{DS,sat} + 2V_T \rightarrow V_{DS2} = V_{G4} - V_{GS4} = V_{DS,sat} + V_T$ (V_T more than needed!!!) The minimum V_o to set M4 in sat is: $V_{o,min} = V_{DS2} + V_{DS,sat} = 2V_{DS,sat} + V_T = 1.3V$

We need a minimum voltage of 1.3V!

Universidad

Carlos III

de Madrid

uc3m

CC

I_{ref}=10 μA All transistors are equally sized

.include cmosedu_models.txt

Negative feedback

Universidad

Carlos III de Madrid

uc3m

CC

Universidad

Carlos III de Madrid

uc3m

(cc

4. Switches and active resistors

uc3m Universidad Carlos III de Madrid

MOS devices can be used to implement switches

4. Switches and active resistors

Enhanced version to increase analog dynamic range:

Universidad **Carlos III** de Madrid

uc3m

4. Switches and active resistors

> Active resistor: connecting the gate to the drain:

Non-linearity is mitigated by restricting V_{DS} variations.

uc3m | Universidad Carlos III de Madrid

5. Reference of currents and voltages

Independent of power supply and temperature.

 \succ How to improve it? \rightarrow We may use the pn junction of a BJT device:

$$V_{REF} \approx \frac{kT}{q} \ln \frac{V_{DD}}{RI_s}$$

 V_{DD} sensitivity less than one.

Universidad

Carlos III de Madrid

5. Reference of currents and voltages

> Power-supply independent current reference:

Universidad

Carlos III de Madrid

uc3m

(cc)

Bibliography

- Allen, P. E., & Holberg, D. R. (2002). CMOS analog circuit design. New York: Oxford University Press.
- R. Jacob Baker. 2010. CMOS Circuit Design, Layout, and Simulation (3rd. ed.). Wiley-IEEE Press.

Simulations are performed through software LTSPice, provided courtesy of <u>Analog Devices</u> and authored by <u>Mike Engelhardt</u>.

Spice models of transistors come from <u>http://cmosedu.com/</u>, website maintained by <u>R. Jacob</u> <u>Baker</u>.