


Unit 6: EXERCISES

V _{DD}	3 V
P (max)	2 mW
Av	2200 V/V
VoH	2.7 V
V _{oL}	0.3 V
SR	10 V/us
CL	3 pF
T delay	1 us
v _p -v _n min	10 mV
ICMR	Between 1.5 and 2.5 V

Ex1. Design a comparator that accomplishes with the next requirements:

Data: $\mu_n C_{ox} = 120 \ \mu A/V^2$, $\mu_p C_{ox} = 40 \ \mu A/V^2$, $\lambda_p = \lambda_n = 0.04 \ V^{-1}$, $|V_{thp}| = |V_{thn}| = 0.7 \ V$, $\lambda_n = 0.04 \ V^{-1}$, $L_{min} = 1 \ \mu m$

We may try with a Miller configuration:

1) Estimation of I_D due to power consumption:

$$I_{D,max} = \frac{P_{max}}{V_{DD}} \rightarrow I_{D,max} = 667 \ \mu A$$

2) Propagation delay:

Dominant pole, propagation delay: $t_{prop} = 0.69R_{OUT}C_L$ Slew rate, propagation delay: $t_{prop} = \frac{V_{OH} - V_{OL}}{2SR} \rightarrow SR = 1.2 \ V/\mu s$ $SR = \frac{I_{D6}}{C_L} \rightarrow I_{D6} = 10 \ \mu A$

Following the same methodology as with opamps/OTAs, the sizes are defined but with the extra requirement of the propagation delay:

Device	W/L, before simulation	W/L, after simulation
1	1	50
2	1	50
3	1	6
4	1	6
5	3	4
6	5	45
7	2	12
8	2	2