Simulation session 1: AMPLIFIERS

SYSTEM-ON-CHIP AND EFFICIENT ELECTRONIC CIRCUIT INTEGRATION TECHNIQUES

uc3m Universidad Carlos III de Madrid

DEPARTAMENTO DE TECNOLOGÍA ELECTRÓNICA
Campus de Leganés
Avenida del Universidad 30
28911 Leganés

INTRODUCTION

In this session we will learn the design process of a Miller opamp. A Miller opamp is a two stage opamp whose frequency response can be approximated by:

$$
\frac{A_{v}\left(\frac{s}{z_{1}}-1\right)}{\left(\frac{s}{p_{1}}+1\right)\left(\frac{s}{p_{2}}+1\right)}
$$

where
$z_{1}=\frac{g m_{2}}{C_{C}}$
$p_{1}=\frac{G B W}{A_{v}}$
$p_{2}=\frac{g m_{2}}{C_{2}}$
$G B W=\frac{g m_{1}}{C_{c}}$
$g m_{1}$ is the transconductance of the first amplifier (part of diff pair)
$g m_{2}$ is the transconductance of the second amplifier
C_{C} is the compensation capacitor
C_{2} is the load of the Miller amplifier
One typical rule of thumb to compute the compensation is to start from a certain transconductance ratio, as $g m_{2} / g m_{1}=10$. This will push the RHP zero to high frequencies (avoiding lead compesation) and will ensure a small compensation capacitor. If we use that ratio, we can use Matlab to predict typical phase margins (PM):

$z_{1}=10 G B W$ $g m_{2}=10 g m_{1}$	
$\mathrm{PM}=45^{\circ}$	$p_{2}=1.2 G B W$
$\mathrm{PM}=60^{\circ}$	$p_{2}=2.2 G B W$

The design process will consist in the following steps:

- Compute compensation
- Use specs to compute bias and sizes
- Simulate the circuit and refine sizes

1. Opamp Specs

Design a Miller opamp for capacitive (or large resistive) loads with the following specifications:

- DC gain>5000 V/V
- Gain-Bandwidth product $>5 \mathrm{MHz}$, Phase Margin $>60^{\circ}$
- Slew Rate > $10 \mathrm{~V} / \mu \mathrm{s}$
- Output swing $\pm 2 \mathrm{~V}$, Supply $\pm 2.5 \mathrm{~V}$, Input Common Mode Range(ICMR) - 1 V to 2 V
- Power consumption $<2 \mathrm{~mW}$

Use the following schematic and $1 \mu \mathrm{~m}$ technology (available in cmosedu_models.txt)

;de vin 2-0.8m 0.8m
;ac dec 100100 100Meg
oop
$K P=40 \mu \mathrm{~A} / \mathrm{V}, \lambda_{P}=0.02 \mathrm{~V}^{-1}, \mathrm{~V}_{\text {thp }}=-0.9 \mathrm{~V}$
$K N=120 \mu \mathrm{~A} / \mathrm{V}, \lambda_{\mathrm{n}}=0.02 \mathrm{~V}^{-1}, \mathrm{~V}_{\mathrm{thn}}=0.8 \mathrm{~V}$

Useful equations in saturation:

$I_{D}=\frac{K N}{2}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t h}\right)^{2}=\frac{K N}{2}\left(\frac{W}{L}\right) V_{D S_{s a t}}^{2}$
$g m=\sqrt{2 K N\left(\frac{W}{L}\right) I_{D}}=\frac{2 I_{D}}{V_{G S}-V_{t h}}$
$r_{d s}=\frac{1}{\lambda I_{D}}$

2. Compensation

Compute C_{c} assuming $z_{1}=10 G B W$

$$
P M=60 \rightarrow p_{2}>2.2 G B W \rightarrow \frac{10 g m_{1}}{C_{2}}>\frac{2.2 g m_{1}}{C_{c}} \rightarrow C_{c}=3 p F
$$

3. Reference current

Compute the reference for M 1 , assuming the amplifier is slewing when maximum current is integrated in C_{c}.

$$
S R=\frac{I_{5}}{C_{c}} \rightarrow I_{5}=\frac{10 \mathrm{~V}}{\mu \mathrm{~S}} 3 p F=30 \mu \mathrm{~A}
$$

The reference for M1 will be $I_{\text {ref }}=I=30 \mu \mathrm{~A}$

4. Bias and Sizes

Compute the size of M3, assuming maximum input common mode

$$
V_{I C}(\max)=2 V(\text { from specs })
$$

$$
\begin{gathered}
V_{I C}(\max)=V_{D D}-V_{S G 3}-V_{D S 1_{s a t}}+V_{G S 1}=V_{D D}-V_{S G 3}+V_{t h 1} \\
V_{S G 3}=2.5-2+0.8=1.3 \mathrm{~V} \\
I_{D 3}=\frac{K P}{2}\left(\frac{W}{L}\right)\left(V_{S G 3}-V_{t h 3}\right)^{2}=\frac{I_{r e f}}{2}=15 \mu \mathrm{~A} \\
\left(\frac{W}{L}\right)_{3}=4.68 \cong 5=\left(\frac{W}{L}\right)_{4} \rightarrow W=10 \mu \mathrm{~m}, L=2 \mu \mathrm{~m}
\end{gathered}
$$

Compute gm1

$$
g m_{1}=C_{c} G B W=3 p F(2 \pi 5 M H z)=94.2 \mu A / V
$$

Compute the size of M5, assuming minimum input common mode

$$
\begin{gathered}
V_{I C}(\min)=V_{D S 5_{s a t}}+V_{G S 1}-V_{S S}=-1 V \text { from specs } \\
V_{m 1}=\frac{94.2 \mu A}{V}=\sqrt{2 K N\left(\frac{W}{L S 5_{s a t}}\right)_{1} I_{D 1}} \rightarrow\left(\frac{W}{L}\right)_{1}=\frac{94.24^{2}}{2 \cdot 120 \cdot 15}=2.46 \cong 3 \\
I_{D 1}=\frac{K N}{2}\left(\frac{W}{L}\right)\left(V_{G S 1}-V_{t h 3}\right)^{2} \rightarrow V_{S G 1}=1.08 \mathrm{~V} \\
V_{D S 5_{s a t}}=0.42 \mathrm{~V} \rightarrow\left(\frac{W}{L}\right)_{5}=\frac{2 I_{D 5}}{K N \cdot V_{D S 5_{s a t}}^{2}}=2.88 \cong 3 \\
W=6 \mu m, L=2 \mu m
\end{gathered}
$$

Compute gm6 for the maximum output swing
On one side $p_{2}=g m_{6} / C_{L}$ and on the other side $g m_{6}=10 g m_{1}=942 \mu \mathrm{~A} / \mathrm{V}$ This will imply that p_{2} will be greater than 2.2 GBW

$$
\begin{gathered}
V_{\text {out }}(\max)=2 V \text { from specs } \\
V_{D S 6_{\text {ssat }}}=V_{D D}-V_{\text {out }}(\max)=2.5-2=0.5 \mathrm{~V}
\end{gathered}
$$

Compute the size of M6 and M7

$$
\begin{gathered}
\left(\frac{W}{L}\right)_{6}=\frac{g m_{6}^{2}}{2 K P \cdot I_{D 6}}=\frac{g_{m 6}^{2}}{2 K P \frac{1}{2} g m_{6}\left(V_{G S 6}-V_{t h}\right)}=\frac{g_{m 6}}{K P \cdot V_{D S 6_{s a t}}} \cong 47 \\
W=94 \mu m, L=2 \mu m
\end{gathered} I_{D 6}=\frac{1}{2} 40 \cdot 47 \cdot 0.5^{2}=235 \mu A=I_{D 7} .
$$

Departamento
Tecnología
Electrónica
UC3M

5. Simulate the amplifier

Direct Newton iteration for .op point succeeded. Semiconductor Device Operating Points:					
Name:	m8	m7	m5	m1	m2
Model:	n 1u				
Id:	3.00e-05	1.50e-04	3.01e-05	1.50e-05	$1.50 \mathrm{e}-05$
Vgs:	$1.26 \mathrm{e}+00$	$1.26 \mathrm{e}+00$	$1.26 \mathrm{e}+00$	$1.03 \mathrm{e}+00$	$1.03 \mathrm{e}+00$
Vds:	$1.26 \mathrm{e}+00$	$1.25 \mathrm{e}-01$	$1.47 \mathrm{e}+00$	$2.24 e+00$	$2.24 \mathrm{e}+00$
Vbs:	$0.00 \mathrm{e}+00$				
Vth:	$8.66 \mathrm{e}-01$	$8.37 \mathrm{e}-01$	$8.66 \mathrm{e}-01$	8.53e-01	$8.53 \mathrm{e}-01$
Vdsat:	$3.57 \mathrm{e}-01$	3.90e-01	$3.57 \mathrm{e}-01$	$1.95 \mathrm{e}-01$	$1.95 \mathrm{e}-01$
Gm:	1.22e-04	3.51e-04	1.22e-04	1.22e-04	1.22e-04
Gds:	1.64e-06	$9.44 \mathrm{e}-04$	1.61e-06	$5.08 \mathrm{e}-07$	$5.08 \mathrm{e}-07$
Gmb:	$3.71 \mathrm{e}-05$	$9.84 \mathrm{e}-05$	$3.73 \mathrm{e}-05$	$3.55 e-05$	$3.55 \mathrm{e}-05$
Cbd:	$0.00 \mathrm{e}+00$				
Cbs:	$0.00 \mathrm{e}+00$				
Sgsov:	1.20e-15	$9.60 \mathrm{e}-15$	1.20e-15	$2.00 \mathrm{e}-15$	$2.00 \mathrm{e}-15$
Sgdov:	1.20e-15	$9.60 \mathrm{e}-15$	1.20e-15	$2.00 \mathrm{e}-15$	$2.00 \mathrm{e}-15$
Sgbov:	$1.80 \mathrm{e}-16$	1.80e-16	$1.80 \mathrm{e}-16$	1.80e-16	$1.80 \mathrm{e}-16$
Cgs:	$1.24 e-14$	8.31e-14	$1.24 \mathrm{e}-14$	$2.07 \mathrm{e}-14$	$2.07 \mathrm{e}-14$
Cgd:	$0.00 \mathrm{e}+00$	$6.42 \mathrm{e}-14$	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$
Sgb:	$0.00 \mathrm{e}+00$				
Name:	m6	m3	m4		
Model:	p_1u	p_1u	p_1u		
Id:	1.50e-04	1.50e-05	1.50e-05		
Vgs:	$3.58 e+00$	$0.00 \mathrm{e}+00$	$8.75 \mathrm{e}-14$		
Vds:	$4.88 \mathrm{e}+00$	$1.29 \mathrm{e}+00$	$1.29 \mathrm{e}+00$		
Vbs:	$4.88 \mathrm{e}+00$	$1.29 \mathrm{e}+00$	$1.29 \mathrm{e}+00$		
Vth:	-9.29e-01	-9.30e-01	-9.30e-01		
Vdsat:	-3.43e-01	-3.43e-01	-3.43e-01		
Gm:	$6.77 e-04$	$6.72 e-05$	$6.72 e-05$		
Fds:	$5.35 \mathrm{e}-06$	$6.18 \mathrm{e}-07$	$6.18 \mathrm{e}-07$		
Fimb:	$2.09 \mathrm{e}-04$	$2.08 \mathrm{e}-05$	$2.08 \mathrm{e}-05$		
Cbd:	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$		
Cbs:	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$		
Sgsov:	$1.88 \mathrm{e}-14$	$2.00 \mathrm{e}-15$	$2.00 \mathrm{e}-15$		
Cgdov:	$1.88 \mathrm{e}-14$	$2.00 \mathrm{e}-15$	$2.00 \mathrm{e}-15$		
Sgbov:	$1.80 \mathrm{e}-16$	1.80e-16	$1.80 \mathrm{e}-16$		
Ogs:	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$		
Cgd:	1.95e-13	$2.07 \mathrm{e}-14$	$2.07 \mathrm{e}-14$		
Cgb :	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$		

$\mathrm{M} /$ is not in saturation, Let's increase W/L of 6 .
Using $W=190 \mu \mathrm{~m}$ and $L=2 \mu \mathrm{~m}$, we have all transistors in saturation

Departamento
Tecnología
Electrónica

UC3M

Semiconductor Device Operating Points:

Name:	m8	m7	m5	m1	m2
Model:	n 1 l	n 1 l	n 1 l	n 1 l	n 1u
Id:	3.00e-05	$2.86 \mathrm{e}-04$	$3.01 \mathrm{e}-05$	1. $\overline{50} \mathrm{e}-05$	1. $500-05$
Vgs:	$1.26 \mathrm{e}+00$	1.26e+00	$1.26 \mathrm{e}+00$	$1.03 \mathrm{e}+00$	$1.03 \mathrm{e}+00$
Vds:	$1.26 e+00$	$3.82 \mathrm{e}+00$	$1.47 e+00$	$2.24 e+00$	$2.24 \mathrm{e}+00$
Vbs:	$0.00 \mathrm{e}+00$				
Vth:	$8.66 \mathrm{e}-01$	$8.37 e-01$	$8.66 \mathrm{e}-01$	$8.53 \mathrm{e}-01$	$8.53 \mathrm{e}-01$
Vdsat:	$3.57 \mathrm{e}-01$	$3.90 \mathrm{e}-01$	$3.57 e-01$	$1.95 \mathrm{e}-01$	$1.95 \mathrm{e}-01$
Gm:	1.22e-04	$1.09 \mathrm{e}-03$	1.22e-04	1.22e-04	1.22e-04
Gds:	1.64e-06	1.44e-05	1.61e-06	$5.08 \mathrm{e}-07$	$5.08 \mathrm{e}-07$
Gmb:	$3.71 \mathrm{e}-05$	$2.84 e-04$	$3.73 \mathrm{e}-05$	$3.55 \mathrm{e}-05$	$3.55 \mathrm{e}-05$
Cbd:	$0.00 \mathrm{e}+00$				
Cbs:	$0.00 \mathrm{e}+00$				
Cgsov:	1.20e-15	$9.60 \mathrm{e}-15$	1.20e-15	$2.00 \mathrm{e}-15$	$2.00 \mathrm{e}-15$
Cgdov:	$1.20 \mathrm{e}-15$	$9.60 \mathrm{e}-15$	1.20e-15	$2.00 \mathrm{e}-15$	$2.00 \mathrm{e}-15$
Cgbov:	$1.80 \mathrm{e}-16$	$1.80 \mathrm{e}-16$	1.80e-16	$1.80 \mathrm{e}-16$	$1.80 \mathrm{e}-16$
Cgs:	$1.24 \mathrm{e}-14$	$9.95 \mathrm{e}-14$	$1.24 \mathrm{e}-14$	$2.07 \mathrm{e}-14$	$2.07 \mathrm{e}-14$
Cgd:	$0.00 \mathrm{e}+00$				
Cgb :	$0.00 \mathrm{e}+00$				
Name:	m6	m3	m4		
Model:	p_1u	p_1u	p_1u		
Id:	$2.86 \mathrm{e}-04$	1.50e-05	1.50e-05		
Vgs:	-1.13e-01	$0.00 \mathrm{e}+00$	$8.77 \mathrm{e}-14$		
Vds:	$1.18 \mathrm{e}+00$	$1.29 \mathrm{e}+00$	$1.29 \mathrm{e}+00$		
Vbs:	$1.18 \mathrm{e}+00$	$1.29 \mathrm{e}+00$	$1.29 \mathrm{e}+00$		
Vth:	-9.29e-01	-9.30e-01	-9.30e-01		

6. Check all the specs, and prove them by simulation

Bias is simulated with .op command
Offset and DC gain is simulated with a DC sweep
AC response can be simulated using the following feedback and the 10 pF load

Transient response can be simulated using voltage follower with the 10 pF load

Departamento
Tecnología
Electrónica

The gain is not as high as expected, so following hints on point 7 we end up with the following AC simulation:

Here, we see, that voltage gain, GBW and PM are good enough
Now we check DC sweep of vin2 between -0.8 mV and 0.8 mV

Offset is below 0.1 mV

Departamento
Tecnología
Electrónica

When vin2 $2=-2$ or +2 V all transsitor are still in sat region

The sizes are as follows:

MOSFET	W(um)	L(um)
M1	10	2
M2	10	2
M3	15	3
M4	15	3
M5	6	2
M6	240	3
M7	36	2
M8	6	2

Power consumption is $1.35 \mathrm{~mW}<2 \mathrm{~mW}$ under specs

7. Optimizing the amplifier

Here there are some hints to optimize the amplifier:

Some tips:

- Gain defined by $\mathrm{gm}_{1}, \mathrm{gm}_{2}, \mathrm{gm}_{6}$ and bias currents
- GBW defined by $\mathrm{I}_{5}, \mathrm{gm}_{1}$ and gm_{2}.
- Slew-rate defined by I_{5}.

