System-On-Chip and efficient electronic circuit integration techniques

Evaluation Design Exercise

A folded cascode OTA needs to be designed, with differential input and single-ended output. The requirements to be accomplished are the following:

- Power consumption lower than 1 mW (all the branches included).
- Gain (vout/vid) higher than 120 V/V, vout is single-ended, vid is diferencial.
- GBW higher than (120-9-X) MHz.
- Slew-rate higher than (70-7·X) V/μs.
- Phase margin higher than (60+2.5·X) degrees.
- ICMR between 0.35 and 0.60 V.
- V_{out,min} = 300 mV, V_{out,max} = 800 mV.
- V_{DD} = 1 V.
- C_L = (10-X) pF.

A 50-nm node will be used, whose feature parameters are the following:

$$K_P = 22.5 \mu A/V^2$$
, $\lambda_P = 0.3 V^{-1}$, $V_{thp} = -0.28 V$, $K_N = 45 \mu A/V^2$, $\lambda_N = 0.6 V^{-1}$, $V_{thn} = 0.28 V$

To measure the experimental slew-rate, V_{out,min}, and Vout,max it is recommended to set the opamp in an unitary gain mode:

- Slew-rate: a square digital signal between 0.55V and 0.45V will be connected to the input signal with a frequency of 10 kHz.

Use the template evaluation_design1.asc.

Note: X represents the last number of your ID card.