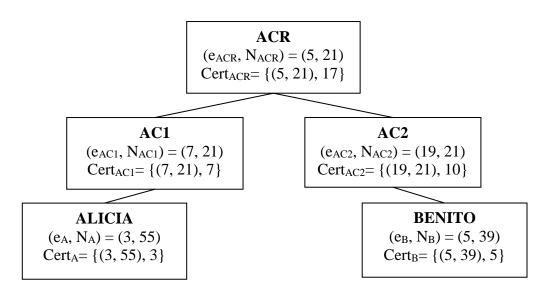
uc3m Universidad Carlos III de Madrid

CRYPTOGRAPHY AND COMPUTER SECURITY


Ana I. González-Tablas Ferreres José María de Fuentes García-Romero de Tejada Lorena González Manzano Sergio Pastrana Portillo UC3M | GRUPO COMPUTER SECURITY LAB (COSEC)

"Public key infrastructures"

Proposed exercises

Exercise 1:

Alicia wants to send a signed message to Benito. The certification authorities' hierarchy and the public key and public key certificates in use are shown in the following figure.

Considerations:

- The certificate of an entity *i* consists of her public key and the signature on the public exponent of the public key issued by the certificate issuer. That is, Cert_i = {(e_i, N), S_{issuer}(e_i)}, being S_{issuer}(e_i) the RSA signature generated by the certificate issuer (the entity immediately precedent within the shown hierarchy).
- Root certification authority self-signs her certificate.
- No hash functions are used.
- Each entity owns a local copy and trust the certificates within the certificate chain of her own certificate (e.g., Benito owns Cert_{AC2} and Cert_{ACR}, and he trusts the local copy of their certificates).

Answer the following questions:

a) Compute Alice's RSA signature of message M = 2.

b) What should send Alicia to Benito so he can check that the message was sent by Alicia? Argument your answer.

c) Assuming that Alicia sends Benito {M, $S_A(M)$, Cert_A, Cert_{AC1}, Cert_{ACR}}, being M = 2 and $S_A(M)$ the result computed in question a), show ALL the computations that Benito should perform to check the authenticity of the received message.

Exercise 2 :

Alice wants to send to Benito a message M signed with RSA. The public keys of Alice and Benito are certified by the certification authorities CA_A and CA_B respectively. A third certification authority (CA) exists, that certifies CA_A and CA_B. Consider that the three certificates are only composed of the signature of the public key exponent of the subject of the certificate.

Data:

- All certification authorities have the same modulo: N=55
- AC public key is (e_{CA}, N)=(7, 55)
- Public exponents of AC_A and A are not provided
- AC_A 's public key is $(e_{CA_A}, N) = (e_{CA_A}, 55)$
- A's public key is (e_A, N)=(e_A, 55)
- The certificate of CA_A issued by CA is 8
- The certificate of A issued by AC_A is 7

Questions:

- a) Calculate the public key of CAA.
- b) Calculate the public key of A.

c) Consider the public key of A is (e_A , N) = (49, 55), compute the RSA signature on the message M=4 by Alice.