uc3m Universidad Carlos III de Madri

CRYPTOGRAPHY AND COMPUTER SECURITY

Ana I. González-Tablas Ferreres
José María de Fuentes García-Romero de Tejada
Lorena González Manzano
Sergio Pastrana Portillo
UC3M | COMPUTER SECURITY LAB (COSEC) GROUP

"Symmetric Encryption: Block ciphers"

Proposed exercises

Exercise 1:

Assume the following DES key:

- a) Compute the first internal subkey generated by the algorithm to encrypt a cleartext.
- b) Compute L1 y R1 for the following cleartext: **10101010 10101010 10101010 10101010 10101010 10101010 10101010**

Exercise 2:

Consider a DES cipher in CBC mode, and the following data:

The cleartext message M = **10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101010 01010101 01010101 01010101 01010101 01010101 01010101 01010101**

- b) Assuming that, after the first iteration of the encryption process, the output of the cipher is C1= 01010101 01010101 01010101 01010101 01010101 01010101, compute the input to the block cipher in the next iteration.
- c) Suppose that C1 is sent over a communication line, and that there is a transmission error which affects 2 bits of this block. Explain and reason how this error would affect the decryption of the message.

Exercise 3:

We know that a user's DES key is composed by 8 symbols from an alphabet of 26 letters. Considering that the time needed to test one single key is 1 microsecond, calculate:

- a) The time needed to break a cryptogram.
- b) The time needed, assuming an alphabet that also includes digits.

Exercise 4:

Given the following intermediate AES state 3 (i.e., the output of the ShiftRows function), calculate the byte from row 1, column 0 (consider that the byte D4 is in position r0,c0):

D4	E0	B8	1E
BF	B4	41	27
5D	52	11	98
30	AE	F1	E5

Exercise 5:

AES SubByte function is a non-linear substitution which is applied independently to every byte within the status matrix (intermediate status 1). For this purpose, the S- BOX substitution table is employed. This table is build using two different transformations

- a) First: Calculate the multiplicative inverse of that byte with respect to the polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$
- b) Second: Apply the following transformation:

where xi bits are parts of the result of the first transformation and yi are the resulting bits of the second transformation (note: subindex 0 indicates the least significant bit)

Suppose the byte A=10001000. Get the resulting byte using the transformations previously described. Check the resulting value using the S-BOX table below.

		3							y								
		0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
×	0	63	7c	77	7b	£2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	cO
	2	b7	fd	93	26	36	3f	f 7	cc	34	a5	e5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b 3	29	е3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	dO	ef	aa	fb	43	4d	33	85	45	f9	02	7£	50	3c	9f	a8
	7	51	a 3	40	8£	92	9d	38	£5	bc	b6	da	21	10	ff	f3	d2
	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	de	22	2a	90	88	46	ee	b8	14	de	5e	Ob	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	c	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	Зе	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	е9	ce	55	28	df
	f	8c	a1	89	0d	bf	е6	42	68	41	99	2d	0f	b0	54	bb	16

Exercise 6:

The following matrix is the input matrix to the ByteSub function::

Recall that the ByteSub transformation is based on the following table:

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 8c al 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 f

- a) Calculate the output status matrix of the ByteSub function.
- b) After this function, the ShiftRow function is applied in AES. Calculate the output status matrix of the ShiftRow function
- c) Afterwards, the MixColumns function is applied. It is based on this transformation:

$$\begin{pmatrix}
S'_{0,C} \\
S'_{1,C} \\
S'_{2,C} \\
S'_{3,C}
\end{pmatrix} = \begin{pmatrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{pmatrix} \begin{pmatrix}
S_{0,C} \\
S_{1,C} \\
S_{2,C} \\
S_{3,C}
\end{pmatrix}$$

Taking as the input status matrix the one calculated previously, calculate the transformation of the column number 0 of that matrix