uc3m | Universidad Carlos III de Madri

José María de Fuentes García-Romero de Tejada
Lorena González Manzano

CRYPTOGRAPHY AND COMPUTER SECURITY

Sergio Pastrana Portillo

"Symmetric Encryption: Block ciphers"

Proposed exercises

Exercise 1 :

Assume the following DES key:
1000010110100100100011111000111110000101101001001000111110001111.
a) Compute the first internal subkey generated by the algorithm to encrypt a cleartext.
b) Compute L1 y R1 for the following cleartext: 10101010101010101010101010101010 10101010101010101010101010101010

Solution:
a)

1) Initial key:

1-8: 10000101
9-16:1 0100100
17-24: $\quad 10001111$
25-32: $\quad 10001111$
33-40: $\quad 10000101$
41-48: 10100100
49-56: $\quad 10001111$
57-64: $\quad 10001111$.
Key after first permutation PC-1:

1	1	1	1	1	1	1
1	0	0	0	0	0	0
0	0	0	0	1	0	0
0	1	0	0	0	0	0
1	1	0	0	1	1	0
0	1	1	1	1	1	1
1	1	1	1	0	0	1
1	0	0	0	0	0	0

2) Left shift one position on each half.

C0: 1111111100000000001000100000
C0 after shift: 1111111000000000010001000001
D0: 1100110011111111110011000000
D0 after shift: 1001100111111111100110000001
3) Second permutation PC-2, reduces key to 48 bits, being the result:

000011110100000100010001100100010111111100010111
b)

1. Initial permutation IP, obtaining L_{0} y R_{0}

1-8: 10101010
9-16: 10101010
17-24: 10101010
25-32: 10101010
33-40: 10101010
41-48: 10101010
49-56: 10101010
57-64: 10101010

L0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
R_{0}	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1

2. Compute the output of the E box (expansion) taking as input $\mathbf{R}_{\mathbf{o}}$ Output of E-box:

111111
111111
111111
111111
111111
111111
111111
111111
3. Next, we combine the bits from the E-box XORing with bits from the internal key (generated in previous step), obtaining the input bits to S-box.

Subkey	E box	Output of E-box =Input to S-box
000011	111111	111100
110100	111111	001011
000100	111111	111011
010001	111111	101110
100100	111111	011011
010111	111111	101000
111100	111111	000011
010111	111111	101000

4. We obtain the outputs of the S-boxes
S1: 5 = 0101;
S2: 2 = 0010;
S3: 5 = 0101;
S4: $13=1101$
S5: 9 = 1001;
S6: 2 = 0010;
S7: $0=0000$;
S8: $9=1001$

Then, we obtain the following output:
01010010010111011001001000001001
5. We obtain the P box output:

11101101001000011001100001000010

6. The output is then XORed with Lo to obtain R_{1} :

P-box output
11101101001000011001100001000010
Lo
00000000000000000000000000000000
R_{1}
11101101001000011001100001000010
7. L_{1} is R_{0}. Thus, we finally obtain
$\mathrm{L}_{1}=\mathrm{R}_{0}$ (from step 1)
11111111111111111111111111111111
R_{1}
1110110100100001100110000100 0010

Exercise 2:

Consider a DES cipher in CBC mode, and the following data:

```
The cleartext message M = 10101010 10101010 10101010101010101010101010101010
10101010 10101010 01010101 01010101 01010101 01010101 01010101 01010101
01010101 01010101
```

The initial value for the registry $C o=1111111100000000111111110000000011111111$ 000000001111111100000000
c) Compute the input value to the $\mathrm{S}-\mathrm{BOX}$ in the first iteration, assuming that there the IP permutation is not performed, and the first internal subkey is k1= 000000111111 000000111111000000111111000000111111.
d) Assuming that, after the first iteration of the encryption process, the output of the cipher is $C 1=01$, compute the input to the block cipher in the next iteration.
e) Suppose that C1 is sent over a communication line, and that there is a transmission error which affects 2 bits of this block. Explain and reason how this error would affect the decryption of the message.

Solution:

a)

1. First, we perform the XOR between the first block with C_{0}, which is $\mathrm{M}_{1} \oplus \mathrm{C}_{0}=$ 01010101101010100101010110101010010101011010101001010101 10101010. This is the input to the DES cipher.
2. Divide the input into Lo y Ro

> 01010101
> 10101010
> 01010101
> Lo
> 10101010
> 01010101
> 10101010
> 01010101 Ro
> 10101010
3. We obtain the output of E-box from Ro

Output of E-box	
0010	10
1010	
1101	0
0101	0
0010	1
1010	
1101	0
0101	

4. Next, we XOR the output bits from E-Blox with the bits from the internal key, obtaining the input bits to S -box.

Key	Output of E-box	Input to S-BOX
000000	001010	001010
111111	101011	010100
000000	110101	110101
11111	010100	101011
000000	001010	001010
11111	101011	0100100
000000	110101	1100101
11111	010100	101011

b) We are asked for the calculus of $\mathrm{M}_{2} \oplus \mathrm{C}_{1}$.

Since the two blocks are the same, the result is 000000000000000000000000 00
c) Given that $M_{i}=D\left(C_{i}, K\right) \oplus C_{i-1}$, an error in the block C_{1} would affect the decryption of blocks M_{1} and $M_{2} . M_{1}=D\left(C_{1}, K\right) \oplus C$ would be affected at a great extent in their bits, with respect to what would've been received in an error-free transmission. This is due to the avalanche effect of $D E S . M_{2}=D\left(C_{2}, K\right) \oplus C_{1}$ would be affected in just two bits, concretely those in the positions of the errors from the transmission of C_{1}

Exercise 3:

We know that a user's DES key is composed by 8 symbols from an alphabet of 26 letters.
Considering that the time needed to test one single key is 1 microsecond, calculate:
a) The time needed to break a cryptogram.
b) The time needed, assuming an alphabet that also includes digits.

Solution:

a) The problem is reduced to calculate the permutation of 26 elements taken eight at a time, i.e, $26^{8}=208827064576$ microseconds, or equivalent 2,41 days.
b) Now it's necessary to calculate $P(36,8)=368=2821109907456$ microseconds $=32,65$ days .

Exercise 4:

Given the following intermediate AES state 3 (i.e., the output of the ShiftRows function), calculate the byte from row 1 , column 0 (consider that the byte D 4 is in position $\mathrm{r} 0, \mathrm{cO}$):

D4	E0	B8	1 E
BF	B4	41	27
$5 D$	52	11	98
30	AE	F1	E5

Solución:

It is necessary to perform the following operation to get the corresponding result for each new byte of the status matrix. Note that it is a combination of several bytes from different rows of the original matrix. We show only the result for $r^{\prime} 1,0$:

$r^{\prime}{ }_{1,0}=\{D 4\} \oplus(\{02\} \bullet\{B F\}) \oplus(\{03\} \bullet\{5 D\}) \oplus\{30\}$
Calculus:
$\{D 4\}=x^{7}+x^{6}+x^{4}+x^{2}$
$\{02\} \bullet\{B F\}=x\left(x^{7}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)=x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x$
$(\{03\} \bullet\{5 D\})=(x+1)\left(x^{6}+x^{4}+x^{3}+x^{2}+1\right)=x^{7}+x^{5}+x^{4}+x^{3}+x+x^{6}+x^{4}+x^{3}+x^{2}+1=x^{7}+x^{6}+$ $x^{5}+x^{2}+x+1$
$\{30\}=x^{5}+x^{4}$ Thus, the result is:
$r^{\prime}{ }_{1,0}=\left(x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1\right) \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right)=x^{6}+x^{5}+x^{2}+x=66$

Exercise 5:

AES SubByte function is a non-linear substitution which is applied independently to every byte within the status matrix (intermediate status 1). For this purpose, the S- BOX substitution table is employed. This table is build using two different transformations
a) First: Calculate the multiplicative inverse of that byte with respect to the polynomial

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1
$$

b) Second: Apply the following transformation:
$\left(\begin{array}{l}\mathrm{b}^{\prime} \\ \mathrm{b}^{\prime} \\ \mathrm{b}^{\prime}{ }_{2} \\ \mathrm{~b}^{\prime}{ }_{3} \\ \mathrm{~b}^{\prime}{ }_{4} \\ \mathrm{~b}^{\prime}, \\ \mathrm{b}^{\prime} \\ \mathrm{b}^{\prime}{ }_{7}\end{array}\right)=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}\mathrm{b}_{0} \\ \mathrm{~b}_{1} \\ \mathrm{~b}_{2} \\ \mathrm{~b}_{3} \\ \mathrm{~b}_{4} \\ \mathrm{~b}_{5} \\ \mathrm{~b}_{6} \\ \mathrm{~b}_{7}\end{array}\right)+\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right)$
where xi bits are parts of the result of the first transformation and yi are the resulting bits of the second transformation (note: subindex 0 indicates the least significant bit)

Suppose the byte $A=10001000$. Get the resulting byte using the transformations previously described. Check the resulting value using the S-BOX table below.

		Y															
		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
\mathbf{x}	0	63	7 c	77	7b	f2	6 b	$6 \pm$	c 5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	34	72	c0
	2	b7	fd	93	26	36	34	f7	ce	34	a5	e 5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9 a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6 e	5a	a0	52	3b	d6	b3	29	e3	$2 \pm$	84
	5	53	d1	00	ed	20	fe	b1	5b	6 a	cb	be	39	4 a	4 c	58	cf
	6	d0	ef	aa	fb	43	4 d	33	85	45	f9	02	7 f	50	3c	9 f	a8
	7	51	a3	40	81	92	9d	38	f5	be	b6	da	21	10	ff	f3	d2
	8	cd	0 c	13	ec	51	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4 f	de	22	2a	90	88	46	ee	b8	14	de	5 e	0 b	db
	a	e0	32	3a	0 a	49	06	24	5 c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4 e	a9	6 c	56	f4	ea	65	$7 \mathrm{7a}$	ae	08
	c	ba	78	25	2 e	1c	a6	b4	c6	e8	dd	74	15	4 b	bd	8b	8 a
	d	70	3e	b5	66	48	03	f6	0 e	61	35	57	b9	86	c1	1 d	9e
	e	e1	f8	98	11	69	d9	8 e	94	9 b	1 e	87	e9	ce	55	28	df
	f	8 c	a1	89	Od	bf	e6	42	68	41	99	2d	$0 f$	b0	54	bb	16

Solution:

First Part

- First transformation

Byte $A=10001000$ corresponds to the polynomial $a(x)=x^{7}+x^{3}$. Now it is necessary to calculate the multiplicative inverse of this polynomial with respect to $\mathrm{m}(\mathrm{x})$. For this purpose, the Euclidean extended algorithm can be employed:
$x^{8}+x^{4}+x^{3}+x+1=x\left(x^{7}+x^{3}\right)+x^{3}+x+1$
$x^{7}+x^{3}=\left(x^{4}+x^{2}+x\right)\left(x^{3}+x+1\right)+x$
$x^{3}+x+1=\left(x^{2}+1\right) x+1$, and so,
$1=\left(x^{3}+x+1\right)-\left(x^{2}+1\right) x=\left(x^{3}+x+1\right)-\left(x^{2}+1\right)\left[\left(x^{7}+x^{3}\right)-\left(x^{4}+x^{2}+x\right)\left(x^{3}+x+1\right)\right]$
$1=\left(x^{3}+x+1\right)-\left(x^{2}+1\right)\left(x^{7}+x^{3}\right)+\left(x^{6}+x^{4}+x^{3}+x^{4}+x^{2}+x\right)\left(x^{3}+x+1\right)$
$1=-\left(x^{2}+1\right)\left(x^{7}+x^{3}\right)+\left(x^{3}+x+1\right)\left(x^{6}+x^{3}+x^{2}+x+1\right)$
$1=-\left(x^{2}+1\right)\left(x^{7}+x^{3}\right)+\left[\left(x^{8}+x^{4}+x^{3}+x+1\right)-x\left(x^{7}+x^{3}\right)\right]\left(x^{6}+x^{3}+x^{2}+x+1\right)$
$1=-\left(x^{2}+1\right)\left(x^{7}+x^{3}\right)+\left(x^{6}+x^{3}+x^{2}+x+1\right)\left(x^{8}+x^{4}+x^{3}+x+1\right)-\left(x^{7}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{7}+x^{3}\right)$
$1=\left(x^{6}+x^{3}+x^{2}+x+1\right)\left(x^{8}+x^{4}+x^{3}+x+1\right)-\left(x^{7}+x^{3}\right)\left[\left(x^{2}+1\right)+\left(x^{7}+x^{4}+x^{3}+x^{2}+x\right)\right]$
$1=\left(x^{6}+x^{3}+x^{2}+x+1\right)\left(x^{8}+x^{4}+x^{3}+x+1\right)-\left(x^{7}+x^{3}\right)\left(x^{7}+x^{4}+x^{3}+x+1\right)$
$1=\left(x^{6}+x^{3}+x^{2}+x+1\right)(m(x))-(a(x))\left(x^{7}+x^{4}+x^{3}+x+1\right)$
inv $\left(x^{7}+x^{3}\right) \bmod . m(x)=\left(x^{7}+x^{4}+x^{3}+x+1\right)$
The resulting inverse is $x^{7}+x^{4}+x^{3}+x+1$. Thus, the output for this first transformation is

X=10011011

- Second transformation

Using the X value in the matrix:
$\left(\begin{array}{l}b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} \\ b_{6} \\ b_{7}\end{array}\right)=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right)+\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right)$

The output is $Y=11000100$, which corresponds to the hexadecimal value C4.

SECOND PART (i.e. check the result)

The input to the ByteSub function is $A=10001000$. The first 4 bits indicate the row, and the remaining 4 indicate the column. Both are referred to the S-Box matrix. The result is:
X=1000-> Row 8
$Y=1000->$ Column 8
Using that matrix the result is the same, C4.

Exercise 6:

The following matrix is the input matrix to the ByteSub function:

Recall that the ByteSub transformation is based on the following table:

a) Calculate the output status matrix of the ByteSub function.
b) After this function, the ShiftRow function is applied in AES. Calculate the output status matrix of the ShiftRow function
c) Afterwards, the MixColumns function is applied. It is based on this transformation:

$$
\left(\begin{array}{l}
\mathrm{S}^{\prime}{ }_{0, \mathrm{C}} \\
\mathrm{~S}_{1, \mathrm{C}}^{\prime} \\
\mathrm{S}^{\prime} \\
\mathrm{S}^{\prime}{ }_{3, C}
\end{array}\right)=\left(\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right)\left(\begin{array}{l}
\mathrm{S}_{0, \mathrm{C}} \\
\mathrm{~S}_{1, \mathrm{C}} \\
\mathrm{~S}_{2, \mathrm{C}} \\
\mathrm{~S}_{3, \mathrm{C}}
\end{array}\right)
$$

Taking the matrix calculated previously as the input state matrix, calculate the transformation of the column number 0 of that matrix

Solution:

a)

$$
\left(\begin{array}{cccc}
01 & D C & D 4 & C C \\
E 4 & 00 & 82 & 5 E \\
D 4 & F D & O 6 & D E \\
D 3 & 4 B & C 3 & 04
\end{array}\right)
$$

b) Each byte is shifted to the left as many positions as indicated by its row number.

$$
\left(\begin{array}{cccc}
01 & D C & D 4 & C C \\
00 & 82 & 5 E & E 4 \\
06 & D E & D 4 & F D \\
04 & D 3 & 4 B & C 3
\end{array}\right)
$$

c)

$$
\begin{aligned}
\left(\begin{array}{l}
\mathrm{S}_{0,0}^{\prime} \\
\mathrm{S}_{1,0}^{\prime} \\
\mathrm{S}_{2,0}^{\prime} \\
\mathrm{S}_{3,0}^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 0 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right) *\left(\begin{array}{c}
01 \\
00 \\
06 \\
04
\end{array}\right) & \left(\begin{array}{c}
02+06+04 \\
01+03 \cdot 06+04 \\
01+02 \cdot 06+03 \cdot 04 \\
03+06+02 \cdot 04
\end{array}\right)=\left(\begin{array}{c}
x+x^{2}+x+x^{2} \\
1+(x+1)\left(x^{2}+x\right)+x^{2} \\
1+x\left(x^{2}+x\right)+(x+1) x^{2} \\
x+1+x^{2}+x+x^{3}
\end{array}\right)= \\
& \left(\begin{array}{c}
0 \\
x^{3}+x^{2}+x+1 \\
1 \\
x^{3}+x^{2}+1
\end{array}\right)
\end{aligned}
$$

This value, expressed in hexadecimal notation, is: $\left(\begin{array}{c}00 \\ 0 F \\ 01 \\ 0 D\end{array}\right)$

