Exercise 1:

Get the secret key that Alice and Bob negotiate using Diffie-Hellman algorithm. Suppose the following parameters: generator $g=2, p=17$, the secret random value chosen by Alice is $x=2$, and the secret random value chosen by Bob is $\mathrm{y}=5$.

Exercise 2:

Alice (A) and Bob(B) wish to exchange a key K using Diffie-Hellman algorithm. They choose the prime $p=13$ and the generator $g=7$ in Z_{13}.
a) If Alice chooses $x=7$ and Bob chooses $y=8$, calculate the key exchanged.
b) Charlie knows g and p and intercepts the communication. If he chooses $c=10$. What are the tasks he has to fulfill to deceive Alice and Bob and to carry out a man in the middle attack? Indicate the messages sent by Charles.
c) What can Alice and Bob do to avoid this active attack?

Exercise 3:

A and B agree on exchanging encrypted messages using a secret key. They will first exchange the secret key using the Diffie-Hellman algorithm. They agree to work mod p, with $p=47$, and the generator $\mathrm{g}=23$.
a) Suppose that A and B randomly choose $x=12$ and $y=33$. Calculate the values they exchange through the communication channel and the shared secret key K they compute.
b) To encrypted a message M using the secret key K computed in the previous question, they use the algorithm $C=M^{K} \bmod n$, where the decryption algorithm computes $M=C^{J} \bmod n$ to retrieve the cleartext message. Calculate the value of J theoretically.
c) Using the previous encryption algorithm, calculate the ciphertext for $\mathrm{M}=16$ with $\mathrm{K}=25$ and $p=47$. Next, get the decryption key J and check that M is obtained from C when used in the decryption algorithm.

Exercise 4:

Anne (A) and Bob (B) want to exchange a secret key with Diffie-Hellman algorithm. They choose $\mathrm{p}=31$.
a) Find the smallest g of $Z p$ that they can use.
b) Ignore the previous result and consider that they choose $g=11$. A chooses the value $X_{a}=5$ and B $X_{b}=10$. Calculate the key K exchanged.
c) What would it happen if A and B choose a number g that is not a generator of $Z p$?
d) If they choose Z_{81} instead of Z_{31}, Would it be more secure? Why?

