"Digital signature scheme"

Self-assessment test

Select the correct answer.

1. Digital signature schemes are based on:

- Mixed cryptosystems
- Symmetric key cryptography
- Hybrid cryptosystems
- Asymmetric key cryptography

2. Digital signature provides the following properties:

- Message integrity, non repudiation and signer confidentiality.
- Signer authentication and confidentiality, and message integrity.
- Signer authentication and non repudiation, and message authentication.
- Signer authentication, non repudiation, and message confidentiality.

3. In digital signature schemes:

- The signer uses his public key to sign.
- The signer uses his private key to sign.
- The signer uses the public key of the verifier to sign.
- The signer uses the private key of the verifier to sign.

4. If a digital signature scheme is deterministic and with appendix:

- The signatures of two equal messages is the same, and the signatures are attached to the message as a separate part to the message.
- The signature of two equal messages is different, and the signatures are attached as a separate part to the message.
- The signature of two equal messages is the same, and the signatures are embedded in the message.
- The signature of two equal messages is different, and the signatures are embedded in the message.

5. A is signing a message using RSA signing algorithm combined with a hash function. Knowing that the hash value of the message is $H(M)=6$, and that A^{\prime} s public key is $(e, n)=(13,77)$, select the signature value that A computes:

- 12.
- 74.
- 41.
- 37.

6. A receives from B the following message signed with El Gamal signature scheme: $\left(\left\{m_{i}\right\}\right.$; $r, s)=(\{9,10,11,12,8,13,1\} ; 5,3)$. Select the correct answer considering that B's public parameters are $p=17, g=3$, and $Y=14$, and that the hash function is defined as $H\left(\left\{m_{i}\right\}\right)=\sum_{i} m_{i}$ mod. 13 (being m_{i} a set of messages):

- The digital signature is not valid $\mathrm{V}_{1} \neq \mathrm{V}_{2}=4$.
- The digital signature is valid $\mathrm{V}_{1}=\mathrm{V}_{2}=4$.
- None of the previous answers is correct.
- All of the above are correct.

