## "Public key infrastructures"

## Proposed exercises

## Exercise 1:

Alicia wants to send a signed message to Benito. The certification authorities' hierarchy and the public key and public key certificates in use are shown in the following figure.


## Considerations:

- The certificate of an entity $i$ consists of her public key and the signature on the public exponent of the public key issued by the certificate issuer. That is, $\operatorname{Cert}_{\mathrm{i}}=\left\{\left(\mathrm{e}_{\mathrm{i}}, \mathrm{N}\right), \mathrm{S}_{\mathrm{issuer}}\left(\mathrm{e}_{\mathrm{i}}\right)\right\}$, being $\mathrm{S}_{\text {issuer }}\left(\mathrm{e}_{\mathrm{i}}\right)$ the RSA signature generated by the certificate issuer (the entity immediately precedent within the shown hierarchy).
- Root certification authority self-signs her certificate.
- No hash functions are used.
- Each entity owns a local copy and trust the certificates within the certificate chain of her own certificate (e.g., Benito owns Cert ${ }_{A C 2}$ and Cert ${ }_{A C R}$, and he trusts the local copy of their certificates).

Answer the following questions:
a) Compute Alice's RSA signature of message $\mathrm{M}=2$.
b) What should send Alicia to Benito so he can check that the message was sent by Alicia?

Argument your answer.
c) Assuming that Alicia sends Benito $\left\{M, S_{A}(M), \operatorname{Cert}_{A}, \operatorname{Cert}_{A C 1}, \operatorname{Cert}_{A C R}\right\}$, being $M=2$ and $S_{A}(M)$ the result computed in question a), show ALL the computations that Benito should perform to check the authenticity of the received message.

## Solution:

a) Computation of $d_{A}$ from $e_{A}$ :
$N_{A}=p_{A} \cdot q_{A}=5 \cdot 11 \rightarrow \Phi\left(N_{A}\right)=\Phi(5) \cdot \Phi(11)=4 \cdot 10=40$
Computation of the multiplicative inverse of $3 \bmod 40$ using the extended Euclidean algorithm:
$40=3 \cdot 13+1 \rightarrow 1=40-13 \cdot 3 \rightarrow d_{A}=27$
Result $=S_{A}(M)=M^{d_{A}} \bmod N_{A}=2^{27} \bmod 55=\left(2^{6}\right)^{4} \cdot 2^{3} \bmod 55=9^{4} \cdot 8 \bmod 55=26 \cdot 26 \cdot 8=\bmod 55$
$=16 \cdot 8 \bmod 55=18$
b) Alicia must send:

- The message
- The signature on the message
- The certificate chain.

Thus, Benito may check their authenticity and trust till one of his trust anchors, Cert ${ }_{\text {ACR }}$.
c) $1^{\circ}$ Benito checks that the message is signed using the purported Alicia's certificate:

- Verification of Alicia's signature:
$S_{A}(M)^{e} A \bmod N_{A}=18^{3} \bmod 55=2^{3} \cdot 9^{3} \bmod 55=72 \cdot 81 \bmod 55=26 \cdot 17 \bmod 55=2=M$

20 Verification of the certificate chain:

- Verification of Alicia's certificate:

Verification of AC1's signature on Alicia's certificate $S\left(e_{A}\right)^{e} A_{C 1} \bmod N_{A C 1}=3^{7} \bmod 21=3^{3} \cdot 3^{3} \cdot 3 \bmod 21=6 \cdot 6 \cdot 3 \bmod 21=3=e_{A}$

- Verification of AC1's certificate:

Verification of ACR's signature on AC1's certificate $S\left(e_{A C 1}\right)^{e} A C R \bmod N_{A C R}=7^{5} \bmod 21=7=e_{A C 1}$

- Verification of ACR's certificate:

It is not necessary as Benito already trusts ACR and owns a local copy of her certificate. Verification of AC1's certificate should be done using Benito's local copy of Cert ${ }_{\text {AcR. }}$

## Exercise 2 :

Alice wants to send to Benito a message $M$ signed with RSA. The public keys of Alice and Benito are certified by the certification authorities $C A_{A}$ and $C A_{B}$ respectively. A third certification authority (CA) exists, that certifies $C A_{A}$ and $C A_{B}$. Consider that the three certificates are only composed of the signature of the public key exponent of the subject of the certificate.

## Data:

- All certification authorities have the same modulo: $\mathrm{N}=55$
- AC public key is $\left(e_{c A}, N\right)=(7,55)$
- Public exponents of $A C_{A}$ and $A$ are not provided
- $A C_{A}$ 's public key is $\left(\mathrm{e}_{\mathrm{CA}_{\mathrm{A}}}, \mathrm{N}\right)=\left(\mathrm{e}_{\mathrm{CA}_{\mathrm{A}}}, 55\right)$
- $\quad A^{\prime}$ s public key is $\left(e_{A}, N\right)=\left(e_{A}, 55\right)$
- The certificate of $C A_{A}$ issued by $C A$ is 8
- The certificate of $A$ issued by $A C_{A}$ is 7

Questions:
a) Calculate the public key of CAA.
b) Calculate the public key of $A$.
c) Consider the public key of $A$ is $\left(e_{A}, N\right)=(49,55)$, compute the RSA signature on the message $M=4$ by Alice.

## Solution:

a) $8=e_{A C_{A}}^{\mathrm{d}_{A C}} \bmod N \quad->\quad e_{A C_{A}}=8^{e_{A C}} \bmod N$
$\mathrm{e}_{\mathrm{AC}_{\mathrm{A}}}=8^{7} \bmod 55=9 \cdot 9 \cdot 9 \cdot 8 \bmod 55=26 \cdot 17 \bmod 55=2$
$A C_{A}$ 's public key is: $\left(e_{A C_{A}}, N\right)=(2,55)$
It is not a valid public key as $\mathbf{e}_{\mathbf{A C}_{\mathbf{A}}}$ does not have multiplicative inverse in modulo $\Phi(N)$ as gcd $(2,40) \neq 1$.
b) Due to the public key of $\mathrm{CA}_{\mathrm{A}}$ is not valid, solution does not exist. If we ignore this fact, the calculations would be:
$7=e_{A}^{d_{A C}} \bmod N \quad \rightarrow \quad e_{A}=7^{e_{A C}} \bmod N$
$e_{A}=7^{2} \bmod 55=49$
and A's public key would be: $\left(e_{A}, N\right)=(49,55)$
c) $\Phi(\mathrm{N})=\Phi(55)=\Phi(5) \cdot \Phi(11)=4 \cdot 10=40$
$e_{A} \cdot d_{A}=1 \bmod 40$
49. $d_{A}=9 \cdot d_{A}=1 \bmod 40$
$40=9 \cdot 4+4$
$9=4 \cdot 2+1$
$1=9-4 \cdot 2=9-2(40-9 \cdot 4)=9-2 \cdot 40+8 \cdot 9=9 \cdot 9-2 \cdot 40$
$d_{A}=9$
$\mathrm{S}_{\mathrm{A}}(\mathrm{M})=4^{9} \bmod 55=2^{18} \bmod 55=\left(2^{6}\right)^{3} \bmod 55=9^{3} \bmod 55=3^{6} \bmod 55=$ $=3^{4} \cdot 3^{2} \bmod 55=26 \cdot 9 \bmod 55=14$

