NG SA

Classic cryptography

Proposed exercises

Note. In these exercises, consider the Spanish alphabet (that is, including ' n ' between ' n ' and ' 0 ', 27 symbols) unless otherwise stated.

Exercise 1 :

Considering the encryption function $E(m)=7 m+3$ mod 27 , answer the following questions
a) Which are the values of the decimation and shift constants?
b) Encrypt "TERCERA"
c) Decrypt "DID ÑOE"

Key:
a) Decimation constant $=7$; Shift constant $=3$
b)

$$
\begin{aligned}
& E(" T ")=E(20)=20 \cdot 7+3(\bmod 27)=8=" I " \\
& E\left({ }^{\prime E} E\right)=E(4)=4 \cdot 7+3(\bmod 27)=31(\bmod 27)=4=" E "
\end{aligned}
$$

This process is repeated until getting the final message: "IEUQ EUD"
c) First we get the decryption equation:
$7^{-1}(\bmod 27)=4$. Thus, the decryption equation is as follows
$D(c)=4(c-3)(\bmod 27)=4 c-12(\bmod 27)=4 c+15(\bmod 27)$
$D(" D ")=E(3)=4 \cdot 3+15(\bmod 27)=0=" A "$
$D(" I ")=E(8)=4 \cdot 8+15(\bmod 27)=20=" T "$
This process is repeated until getting the final message: "ATAQUE"

Exercise 2:

Given the key "LUCI" encrypt the message $\mathrm{M}=$ "CAMINERO" using Vigenère.

Key:

Exercise 3:

Given the key "PLUS" decrypt the message C= "LSAW COMW" given that it was encrypted using Vigenère.

Key:

VIGENERE

Exercise 4:

Given the key "ALA" decrypt the message C= "EDVI KVQG" given that it was encrypted using Vigenère with autokey

Key:
Given that we are dealing with the autokey variant, it is needed to decrypt it step by step as follows:
EDVI KVQG
ALA
ESV

EDVI KVQG
ALAE SV

ESVE RA

EDVI KVQG
ALAE SVER

ESVE RANO

Exercise 5:

Given the key "MARTES", encrypt M= "FALSO PUENTE" using Playfair
Key:

BE GF PQ ZF QM RZ
Consider that the matrix is the following one:

M A R TE
S BC D F
G HI/JK L
N/ÑOPQU
v WX Y Z

Exercise 6:

Given the key "MARTES" decrypt C= "FOMUMB ZFTERZ" given that it was encrypted using Playfair

Key:

bUENA SUERTE X

The matrix is the same is in the previous exercise.

Exercise 7:

Given the matrix $K=\left[\begin{array}{ll}3 & 2 \\ 4 & 6\end{array}\right]$ answer the following questions:
a) Determine if it is suitable as key for Hill ciphers.
b) Encrypt $M=$ " ${ }^{\text {RECORDAR" using Hill cipher. }}$

Key:
a) $\operatorname{det}(K)=10 \neq 0$ and $\operatorname{gcd}(\operatorname{det}(K), 27)=1$, this is suitable to be used in Hill.
b) We need to work on the message in pairs of characters as follows:

Encrypt $($ RE $)=\left[\begin{array}{ll}3 & 2 \\ 4 & 6\end{array}\right] \begin{gathered}*(18) \\ (4)=(6296) \bmod 27=(815)=" I O "\end{gathered}$
Repeating the process for the remaining pairs, it leads to: C="IOJQ GJJA"

Exercise 8:

Given the matrix $K=\left[\begin{array}{ll}7 & 6 \\ 3 & 11\end{array}\right]$ answer the following question:
a) Decrypt C="J8D6" considering the English alphabet with numbers in the following order $\{A, \ldots, Z\}+\{0, \ldots, 9\} .$.

Key:

a) First, we need to compute the inverse matrix:

Given that $\operatorname{Det}(K)=|K|=23$, and that $\operatorname{gcd}(23,36)=1$, we can compute the inverse $\operatorname{Det}(K)^{-1}=|K|^{-1}=11$. This result can be used to compute the inverse of the matrix,

$$
K^{-1}=|K|^{-1} \cdot \operatorname{adj}(A)^{\top} \bmod 36=\left[\begin{array}{cc}
13 & 6 \\
3 & 5
\end{array}\right]
$$

Now we operate the ciphertext in pairs, as follows:

$$
\mathrm{K}^{-1} \cdot " \mathrm{~J} 8 " \bmod 36=\left[\begin{array}{ll}
13 & 6 \\
3 & 5
\end{array}\right] *\left[\begin{array}{l}
9 \\
34
\end{array}\right]=\left[\begin{array}{l}
33 \\
17
\end{array}\right]=" 7 \mathrm{R} "
$$

We repeat the process for "D6". The final result is: "7RPZ"

Exercise 9:

Consider the permutation $K_{p}=$ (642135). Decrypt the message $C=$ "OOEMTD IACSLS EEOCSE" which has been encrypted using that permutation.

Key:

OOEMTD IACSLS EEOCSE
$123456123456123456 \rightarrow$ Re-ordering based on the permutation:
$\mathrm{M}=$ "METODOS CLASICOS"

Exercise 10:

Encrypt the following message $M=$ "FIESTA NACIONAL" using a 4-column transposition

Key:

It should be transposed as follows:

FIES
TA N A
CION
ALXX

Thus, the result is C="FTCAI AILENO XSANX" (that is, reading the matrix by columns)

