"Asymmetric encryption"

Proposed exercises

Exercise 1:

Given the following RSA ciphers, perform the corresponding computation considering that the parameters provided correspond to the receiver:
a) $p=5, q=7$, and $d=11$. Encrypt the message $M=2$ and decrypt the result
b) $\quad p=3, q=11$, and $e=7$. Encrypt the message $M=5$ and decrypt the result
c) $n=55$, and $e=7$. Encrypt the message $M=10$ and decrypt the ciphertext $C=35$
d) $n=91$, and $d=11$. Encrypt the message $M=3$ and decrypt the ciphertext $C=41$

Solución:

a) $\quad \mathrm{N}=\mathrm{p} \cdot \mathrm{q}=>\mathrm{N}=5 \cdot 7=35$
$\phi(35)=\phi(5) \cdot \phi(7)=4 \times 6=24$
d \cdot e $\bmod \phi(35)=1=>11 \cdot e \bmod 24=1=>e=11$
C $=2^{11} \bmod 35 ; \mathrm{C}=18$
$\mathrm{M}=18^{11} \bmod 35 ; \mathrm{M}=2$
b) $\quad \mathrm{N}=\mathrm{p} \cdot \mathrm{q}=>\mathrm{N}=3 \cdot 11=33$
$\phi(33)=\phi(3) \cdot \phi(11)=2 \cdot 10=20$
d $\cdot \mathrm{e} \bmod \phi(33)=1=>7 \cdot d \bmod 20=1=>d=3$
$\mathrm{C}=5^{7} \bmod 33 ; \mathrm{C}=14$
$M=14^{3} \bmod 33 ; M=5$
c) $\quad \mathrm{N}=55=>\mathrm{p}=5, \mathrm{q}=11$
$\phi(55)=\phi(5) \cdot \phi(11)=4 \cdot 10=40$
$d \cdot e \bmod \phi(55)=1=>7, d \bmod 40=1=>d=-17=23$
C $=10^{7} \bmod 55 ; \mathbf{C = 1 0}$
$\mathrm{M}=35^{23} \bmod 55 ; \mathbf{M}=30$
d) $\quad \mathrm{N}=91=>\mathrm{p}=7, \mathrm{q}=13$

$$
\begin{aligned}
& \phi(91)=\phi(7) \bullet \phi(13)=6 \bullet 12=72 \\
& d \bullet e \bmod \phi(91)=1=>11 \bullet \text { e } \bmod 72=1=>e=-13=59 \\
& C=3^{59} \bmod 91 ; C=61 \\
& M=41^{11} \bmod 91 ; M=20
\end{aligned}
$$

Exercise 2:

a) What is the strength of RSA? What length must the keys in RSA have? What is the "trapdoor" to generate the keys in RSA?
b) Martin wants to send an encrypted message to Laura using RSA, with $p=5, q=11$ and $d=7$. If the message is $\mathrm{M}=10$. What does Laura receive? Is it a good election p, q and d ? Why?

Solución:

a.1) The strength of RSA lies on the difficulty of factoring large numbers
a.2) Nowadays, the keys used must have a length between 1024 and 2048 bits.
a.3) The prime numbers p and q (secret) are the trap-door of the system. If p and q are known it is easy to calculate d having e , while the complexity to factor N is
$\mathrm{O}(\mathrm{e}(\ln (\mathrm{N}) \ln \ln (\mathrm{N})) 1 / 2)$
b) To encrypt it is necessary to use Laura's public key e. We have $d=7$ and e.d $=1 \bmod \Phi(N)$.
$\Phi(55)=\Phi(5) \cdot \Phi(11)=4 \cdot 10=40 ; 7 \cdot e=1 \bmod 40$ like g.c.d $(7,40)=1$ we can apply Euler or Euclides
Euler: $\mathrm{a}^{-1}=\mathrm{a} \Phi(\mathrm{n})-1 \mathrm{mod} . \mathrm{n}=>\Phi(\mathrm{n})=\Phi(40)=\Phi(23) \cdot \Phi(5)=(23-22) \cdot 4=16$
$\mathrm{e}=\mathrm{d}^{-1}=\mathrm{d}^{\Phi(40)-1}=7^{15}(\bmod 40)=\left(7^{2}\right)^{7} \cdot 7(\bmod 40)=9^{7} \cdot 7=\left(9^{2}\right)^{3} \cdot 9 \cdot 7=81^{3} \cdot 63(\bmod 40)=13 \cdot 23$
$=23 \mathrm{e}=23$
To encrypt $\mathrm{M}=10 ; \mathrm{C}=\mathrm{M}^{\mathrm{e}}(\bmod \mathrm{N})=10^{23} \bmod 55$
We know that $10^{2}(\bmod 55)=-10$ y $10^{3}(\bmod 55)=-10 \cdot 10=-100(\bmod 55)=10$
Thus, $10^{23}=\left(10^{3}\right)^{7} \cdot 10^{2}(\bmod 55)=10^{7} \cdot\left(10^{2}\right)=10^{9} \bmod 55=\left(10^{3}\right)^{3} \bmod 55=10$
p , q y d must be large primes and besides we can see that Martin message is invariant after encryption $(\mathrm{M}=\mathrm{C})$. Therefore, the election of p, q and d is not good.

Exercise 3:

Alice and Bob are playing a popular game by e-mail. The game keeps in secret the messages exchanged by both players in each game. The messages are encrypted and sent with 27 elements where $A=0, \ldots \ldots, Z=26$. They use RSA algorithm to encrypt their communications. Alice's public key is $\left(e_{A}, N_{A}\right)=(7,33)$. Bob's public key is $\left(e_{B}, N_{B}\right)=(5,39)$.

Alice receives the ciphertext: $26,2,15,16,6,0,13$ and Bob receives: $22,8,10,9,18,0$.
Calculate the first three values sent and the first three values received by Alice.

Solution:

Alice uses her private key to decrypt the messages received.
First we calculate the private key (we can do it because N_{A} is small):
$\Phi\left(N_{A}\right)=2 \cdot 10=20$
$e_{A} \cdot d_{A}=1\left(\bmod . \Phi\left(N_{A}\right)\right) ; d_{A} \cdot 7=1(\bmod .20) _d_{A}=3$
Alice decrypts the message letter by letter.
$26^{3}(\bmod .33)=20->T$
$2^{3}(\bmod .33)=8->1$
$15^{3}(\bmod .33)=9->J$
Calculation of Bob's private key
$\Phi\left(N_{B}\right)=2 \cdot 12=24$
$e_{B} \cdot d_{B}=1\left(\bmod . \Phi\left(N_{B}\right)\right) ; d_{B} \cdot 5=1(\bmod .24) _d_{B}=5$
Bob decrypts the message sent by Alice with his private key letter by letter:
$22^{5}(\bmod .39)=16->P$
$8^{5}(\bmod .39)=8->1$
$10^{5}(\bmod .39)=4->E$

Exercise 4:

Alice and Bob use RSA algorithm to encrypt their communications with the following public keys:

$$
\left(n_{A} ; e_{A}\right)=(55 ; 9) y\left(n_{B} ; e_{B}\right)=(39 ; 5)
$$

a) Calculate the ciphertext C_{B} that Bob must send to Alice if the message is:

MANDA DINERO

and calculate too the message corresponding to the answer of Alice
NO TENGO.
b) Decrypt the ciphertext C_{A} received by Bob

Note: Letters A-Z (without $\tilde{\mathrm{N}}$) are coded as $0-25$, the dot as 26 , and the blank as 27

Solución:

a)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
012345678910111213141516171819202122232425
Bob must send to Alice the message MANDA DINERO coded:
M -> 12 A ->0 N->13 D->3 ' ' ->27 I->8 E->4 R->17 O->14
Bob must use the public key of Alice $\left(n_{A} ; e_{A}\right)=(55 ; 9)$, because only Alice can open the ciphertext CB.
Alice will use $C B=M^{e A} \bmod n_{A}$.
$C_{B}->C\{M\}=12^{9} \bmod 55=12$
$C\{A\}=0^{9} \bmod 55=0$
$C\{N\}=13^{9} \bmod 55=28$
$C\{D\}=3^{9} \bmod 55=48$
$C\left\}=27^{9} \bmod 55=42\right.$
$C\{I\}=8^{9} \bmod 55=18$
$C\{E\}=4^{9} \bmod 55=14$
$C\{R\}=17^{9} \bmod 55=2$
$\mathrm{C}\{\mathrm{O}\}=14^{9} \bmod 55=4$
Then $C_{B}=[12,0,28,48,0,42,48,18,28,14,2,4](\bmod 55)$
The answer of Alice, NO TENGO, has been encrypted. She uses Bob's public key
$\left(n_{B} ; e_{B}\right)=(39 ; 5)$ to encrypt. $C_{A}=M^{e B} \bmod n_{B}$.
N->13 O->14 ' ' ->27 T->19 E->4 G->6 .->26
$C_{A} \rightarrow C\{N\}=13^{5} \bmod 39=13$
$C\{O\}=14^{5} \bmod 39=14$
C $\left\}=27^{5} \bmod 39=27\right.$
$C\{T\}=19^{5} \bmod 39=28$
$C\{E\}=4^{5} \bmod 39=10$
$\mathrm{C}\{\mathrm{G}\}=6^{5} \bmod 39=15$

C\{. $\}=26^{5} \bmod 39=26$
Then, $C A=[13,14,27,28,10,13,15,14,26](\bmod 39)$
b) Bob uses his private key to decrypt $C_{A}=[13,14,27,28,10,13,15,14,26](\bmod 39)$. Thus, $M_{A}=C_{A}{ }^{d B}(\bmod$ N_{B})
$\mathrm{n}_{\mathrm{B}}=3 \cdot 13=39$
$\Phi\left(n_{B}\right)=2 \cdot 12=24$
$\mathrm{e}_{\mathrm{B}} \cdot \mathrm{d}_{\mathrm{B}}=1\left(\bmod \Phi\left(\mathrm{n}_{\mathrm{B}}\right)\right)=; \mathrm{d}_{\mathrm{B}} \cdot 5=1(\bmod 24) \mathrm{d}_{\mathrm{B}}=5$
$M A \rightarrow M\{13\}=13^{5} \bmod 39=13->N$
$M\{14\}=14^{5} \bmod 39=14->0$
$M\{27\}=27^{5} \bmod 39=27$-> ' ${ }^{\prime}$
$M\{28\}=28^{5} \bmod 39=19->T$
$\mathrm{M}\{10\}=10^{5} \bmod 39=4->E$
$M\{13\}=13^{5} \bmod 39=13->N$
$\mathrm{M}\{15\}=15^{5} \bmod 39=6->G$
$M\{14\}=14^{5} \bmod 39=6->0$
$\mathrm{M}\{26\}=265 \bmod 39=26->$.
MA = NO TENGO.

