Mathematical background

Self-assessment test

Select the correct answer.

1. Given a, b and c, which belongs to Z number set:

- If Z is a Group, " a " value does not have to have inverse.
- If Z is a ring $(Z,+, \cdot), a \cdot(b+c)=(a \cdot b)+(a \cdot c)$ will be met
- If Z is a field, " a " value does not have to have inverse.
- If Z is a field, then $a \cdot b=b \cdot a$ does not have to be met.

2. What does it mean that a pair of numbers a and b are congruent modulo n ?

- Both are divisible by n.
- Both are multiples of n.
- That $a-b$ is a multiple of n.
- That $a+b$ and $a-b$ leave the same remainder after being divided by n.

3. What is the result of $2343 \bmod 10$?

- 43
- 23,4
- 234
- 3

4. Choose a pair of numbers within the congruence $[9]_{15}$:

- -6 y 39
- $0 y 9$
- 15 y 24
- - 21 y 33

5. How many different results could generate a reduction module 7?
$\bigcirc 7$.

- 6.
- Endless.
- It depends on the value of the number to reduce.

6. Assume that $\operatorname{arod} 9=3$, and $b \bmod 9=7$. Choose the correct result from the following ones, applying modular arithmetic principles:

- a*b mod 9=21.
- Given $c=2$, then $a \cdot(b+c) \bmod 9=6$.
- It depends on the value of the number to reduce.
- $a+b \bmod 9=1$.

7. The inverse of 3 module 7 is...

- $1 / 3$.
- $-1 / 3$.
- 5 .
- 4

8. According to Fermat and Euler theorems, once applied to equation $a x=1 \bmod n$:

- Both demand " n " to be a prime number.
- Fermat is an instance of Euler.
- Euler needs " a " and " $n-1$ " to be coprime numbers.
- If $n=0$, both can be applied interchangeably.

9. What of the following Euler totient function is the right one?

- $\Phi(12)=3$.
- $\Phi(35)=24$.
- $\Phi(11)=11$.
- $\Phi(34)=33$.

10. The order of 4 regarding 7 is...

- 7, and this is the reason why it is generator.
- 6, and this is the reason why it is generator.
- 3, and this is the reason why it is not generator.
- 6, and this is the reason why it is not generator.

