"Asymmetric encryption"

Self-assessment test

Select the correct answer.

1. In asymmetric or public key cryptosystems:

- Both parties share a symmetric key that is used to encrypt and decrypt.
- Each party knows his private key, and everyone knows the public keys of all parties.
- Each party knows his public key, and everyone knows the private keys of all parties.
- Both parties share an asymmetric key that is used to encrypt and decrypt.

2. In asymmetric or public key cryptosystems, when A sends an encrypted message to B:

- She uses B's private key to encrypt the message
- She uses A's private key to encrypt the message
- She uses B's public key to encrypt the message
- She uses A's public key to encrypt the message

3. Security of asymmetric or public key cryptosystems is based on:

- In complex problems solvable with polynomial algorithms.
- In hard problems based on bijective functions that are not trapdoor ones
- They are based on the discrete logarithm hard problem
- Some systems are based on the difficulty of factorizing large integers

4. Comparing with symmetric cryptosystems:

- For similar key size, asymmetric systems are faster.
- For similar key size, symmetric systems are faster.
- Recommended asymmetric key size is larger than the one recommended for symmetric key size.
- Recommended asymmetric key size is smaller than the one recommended for symmetric key size.

5. If A has chosen $e=23$ with $n=143$, choose the value of her private exponent d in RSA:

- 49
- 47
- 23
- 1

6. B's RSA keys are $e=(13,33), d=(17,33)$. If A wants to encrypt the message $M=2$ for B, chose which of the following values corresponds to the ciphertext:

- 8
$\bigcirc 4$
- 29
- 12

7. If A has chosen $\mathrm{p}=13$ as modulo in El Gamal (encryption), choose which of the following values she can use as generator g:

- 2
- 3
- 4
- 5

8. B has chosen the following El Gamal (encryption) keys and parameters: $p=17, g=7, x=5, y=11$. If A encrypts message $M=6$ for B, using ephemeral key $k_{e}=9$, chose the value that corresponds to the encrypted message:

- $(15,2)$
- $(3,12)$
- $(10,5)$
- $(12,11)$

