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Linear equations with one variable

Recall what a linear equation is:

v

y = by + b1z is a linear equation with one variable, or

equivalently, a straight line.

> linear on x, we can think this as linear on its unknown
parameter, i.e., y = 1.3 4+ 3z

> by and b; are constants, by is the y-intercept and b; is the
slope of the line, y is the dependent variable, and x is the
independent variable

» slope of a line being b1 means for every 1 unit horizontal

increase there is a by unit vertical increase/decrease

depending on the sign of b;.
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Linear equations with one variable

> A linear equation is of deterministic nature = outcomes
are precisely determined without any random variation

» A given input will always produce the same output =
perfect relationship

» In real life data, it is almost impossible to have such a
prefect relationship between two variables. We almost
always rely on rough predictions. One of our tools to do so
is regression.
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Empirical and Theoretical Relationships

» Economists are interested in the relationship between two
or more economic variables = at least bivariate populations

» The economic theory in general suggests relationships in
functional forms (recall economic models). These relations
are deterministic, such as Y = f(X), or
Y = f (X1, Xo,..X})

» A given input will always produce the same output =
perfect relationship
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Example 1: Study time and score

Let’s consider the following example. The table below shows
the data for total hours studied for a calculus test, x, and the
test scores, y.

Time | Score
(x) | )
10 92

15 81

12 84

20 74

8 85

16 80

14 84

22 80
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Example 1, cont’d

Consider the scatter plot based on the data of example 1. Does
it look like a perfect relationship?

Study time vs Exam score
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Example 2: Savings and income

» Relationship between savings (Y) and income (X)
(Goldberger, Chapter 1 of “A Course in Econometrics”,
Harvard U. Press. 1991)

e Data from 1027 families, between 1960-1962, in the USA

» The joint distribution of savings and income are presented
in the next table = P (Y, X)

» For discrete case, P (Y, X) = P(Y =yand X = z).
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Example 2, cont’d

Table : Joint Distribution Y, savings, and X, income: P (Y, X)

Y

1.4

X (in 1000 of Dollars)

3.0

4.9

7.8

14.2

(Savings rate)

(Sum

0.45
0.18
0.05
-0.11
-0.25

0.015
0.019
0.059
0.023
0.018

0.026
0.032
0.066
0.035
0.016

0.027
0.057
0.071
0.045
0.016

0.034
0.135
0.086
0.047
0.008

0.033
0.063
0.049
0.015
0.005

P (X)
(Sum of the Columns)

0.134

0.175

0.216

0.310

0.165
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Example 2, cont’d

» Among the information we can obtain from a joint
probability table, there are two that are of interest to us:
o whether we can have a deterministic relationship, i.e.,
Y = f(X)
e whether savings and income are independent

» Can we have a deterministic relationship between savings
and income based on the previous table?

e No. In order to have a deterministic relationship, we need
to have a unique savings for each level of income, in other
words we need to have a functional relationship.

e In terms of probability, for each income level, we need to
have only one savings level with positive probability!
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Example 2, cont’d

» But we do have a relationship between income level and
savings = As income increases, savings level increases.

» To further investigate this, lets calculate the conditional
distribution:

o P(v|x) = 20N

P (X)
° [ly|x=z = ZyP Y =ylX =2)

@UEL
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Example 2, cont’d

Table : Conditional Distribution of Y, savings, given X, income:
P(Y|X)

X (in 1000)
Y 1.4 3.0 4.9 7.8 14.2
0.45 | 0.112 0.149 0.125 0.110 0.200
0.18 | 0.142 0.183 0.264 0.435 0.382
0.05 | 0.440 0.377 0.329 0.277 0.297
-0.11 | 0.172 0.200 0.208 0.152 0.091
-0.25 | 0.134 0.091 0.074 0.026 0.030
Column sum 1 1 1 1 1
fiy|x | 0.045 0.074 0.079 0.119 0.156

What is the relationship between the conditional mean and

income level? @
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Empirical and Theoretical Relationships

» The empirical relationships between economic variables =
not deterministic, but stochastic

» To combine theory and data, one must interpret the
economic theory in a different way

o When the economic theory postulates that Y is a function
of X, Y = f(X), it implies that the expected value of Y is
a function of X, E[Y] = f(X)

o YV = f(X) = deterministic, E[Y] = f(X) = stochastic

@UEL
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Prediction

» When we are in a stochastic setting, we are in general
interested in prediction, but how do we form our
prediction?

» One way would be just to guess a number, but do you
think it will be good? How can we assess that it is good?

> We are interested in finding the best way of predicting

@UEL
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Prediction

» Suppose we want to predict Y, using the information on X.
Let ¢(X) be a prediction
» Then, U =Y — ¢(X) will be our prediction error. We want

the expected value of the square of our prediction, F[U?]
error to be as small as possible

o Why E[U?]?

o Choose a prediction so that E[U?] = Z (y — e(X))? P(y)

yey
is minimized

@UEL
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Prediction: The best constant prediction

» We do not always have bivariate, or multivariate case,
sometimes we only have information on Y

» In these cases, our prediction does not depend on other
variables, so our prediction can be denoted as ¢
» Then we choose a prediction such that we minimize
2
E[U? =) (y—c)’Ply) =c=EY]=ny
yey
> Average of Y is the best constant predictor

@UEL
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Exercise 2, cont’d

Y (Saving rate) P(Y)
0.45 0.135
0.18 0.306
0.05 0.331
-0.11 0.165
-0.25 0.063

Then the best constant predictor for the saving rate is:

E[Y] = 0.45%0.135 4 0.18 % 0.306 + 0.05 * 0.331

— 0.11%0.165 —

0.25 * 0.063

= 0.09848 = 9.85%
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Prediction: The best linear prediction

» In the case that we have bivariate data (Y, X), say savings
rate and income levels, then we can make use of the
relationship between them to predict Y

» Linear prediction implies that our ¢(X) is linear, i.e.,
cX)=co+aX
» So, we need to find ¢y and ¢; such that
E[U?) = Z (y — ¢(X))? P(y) is minimized
yey

@UEL
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Prediction: The best linear prediction

» By replacing ¢(X) by ¢y + ¢1X, and solving for the
minimization problem we get
@ Cop = o = E(Y) — alE(X) = Uy —O1Ux

C(X,Y) Xy
TATMTIVX) T %

» The function ag + a1 X is the linear projection (or the
best linear prediction) of Y given
X = LY|X)=ay+uX

@UEL
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Example 2, cont’d

» To get the best linear prediction for savings rate, we need
to calculate: E[X], E[Y], E[XY],C(X,Y), E[X?],V(X)
» For E[XY]:

XY P(XY) XY PXY) XY PXY) XY PXY)

-3.55  0.005 -0.75 0.016 0.07 0.059 054 0.032
-1.95  0.008 -0.54 0.045 0.15 0.066 0.63 0.015
-1.56  0.015 -0.35 0.018 025 0.071 0.71 0.049
-1.23  0.016 -0.33 0.035 0.25 0.019 0.88 0.057
-0.86  0.047 -0.15 0.023 039 0.086 1.35 0.026
5 5
» BIXY]=) ) X;V;P (XY = X;Y;) =0.783
i=1 j=1
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Example 2, cont’d

» B[X]=14%0.134+3.0%0.175 + 4.9 % 0.216 + 7.8 % 0.310 +
14.2 % 0.165 = 6.532

» C(X,Y)=E[XY] - E[X|E]Y] =
0.782607 — 6.532 x 0.09848 = 0.13934

» E[X?] =1.422 % 0.134 + 3.022 % 0.175 + 4.922 % 0.216 +
7.822 % 0.310 + 14.222 x 0.165 = 59.155

» V(X) = E[X?] — (E[X])? = 59.155 — 6.53222 = 16.488

» co=ap=EY)—- a1 E(X)=0.0433

C(X,Y)

= 0.00845
V(X)

> Cl = o1 =

@UEL

20



Example 2, cont’d

» L(Y|X) = 0.043278 4+ 0.008451 X

» The for discrete values of X, we get

0.043278 + 0.008451 * 3.0 = 0.069 if X =3.0
0.043278 4 0.008451 * 4.9 = 0.085 it X =49
0.043278 4+ 0.008451 * 7.8 = 0.1092  if X =7.8
0.043278 4+ 0.008451 « 14.2 = 0.1633 if X = 14.2

LY|X) =

@UEL
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Best Prediction

» So far we considered best constant predictor, and best
linear predictor

» Let’s relax the linearity restriction on ¢(X), i.e., ¢(X) can
be any function that minimizes E[U?]

» The best predictor of Y then becomes the conditional
expected value of YV, E[Y|X]
o If the E[Y|X] is linear, then E[Y|X] and L(Y|X) are the
same. The reverse is NOT true!!!
o If the E[Y|X] is NOT linear, then L(Y|X) is the best
linear approximation to E[Y|X]

@UEL
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Example 2, cont’d

X (income) c L(Y|X) E[Y|X]

(in $1000s) BCP  BLP BP
1.4 0.0985  0.055 0.045
3.0 0.0985  0.069 0.074
4.9 0.0985  0.085 0.079
7.8 0.0985  0.1092 0.119
14.2 0.0985 0.1633 0.156

23
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Prediction

» Whenever L(Y|X) # E[Y|X], L(Y|X) provides a good
approximation to E[Y|X], hence can be used in some
circumstances

» However, E[Y|X] characterizes conditional mean of Y
given X, the L(Y|X) does not = E[Y|X] can have causal
interpretation, the L(Y'|X) can not

@UEL
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SIMPLE LINEAR REGRESSION (SLR)

@UEL
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Simple Linear Regression

» QOur big goal to analyze and study the relationship between
two variables

» One approach to achieve this is simple linear regression, i.e,
Y=0+05X+¢
» While answering our question, a simple linear regression
model addresses some issues:
1. How to deal with the factors other than X that effects Y
2. How to formulate the relationship between X and Y

3. Whether our model captures a ceteris paribus relationship
between X and Y

@UEL
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Simple Linear Regression

SLR Model: Y = 5y + 51X +¢

» Y = Dependent variable, endogenous variable, response
variable, regressand ...

» X = Independent variable , exogenous variable, control
variable, regressor ...

» 3 = (Po, S1) = Parameter vector, population parameters

» ¢ = FError term

@UEL
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Simple Linear Regression: Assumptions

A1l: Linear in parameters

» [t implies that a unit change in X has the same effect on
Y, independently of the initial value of X.
» SLR is linear in parameters:
o The following are linear in parameters: Y = Sy + 51 X + ¢,
Y = By X2
BoX? + B logZ +e

o The following is NOT linear in parameters: Y = 8; X?2¢

» Violations of this assumption are form of a “specification
errors, such as nonlinearity (when the relationship is not
linear in parameters)

» We can overcome the limitations this assumption imposes

@UEL
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Simple Linear Regression: Assumptions

A2: Ee|X]=0

» For the all values of X, the mean error rate is same and
equal to 0.

» Ele|X] = 0 implies for any function h(), C'(h(X),e) = 0.
Hence, ¢ is not correlated with any function of X

» In particular, C(X,e) =0

C(X,e) = E[Xe] - E[X]E[E]

E[Xe] = B|E[X¢|X]] = B[XE[e|X]] =0
E(X)E(s) =

ja)

@UEL
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Simple Linear Regression: Assumptions

» E[Y|X] = po+ p1X, the conditional expectation function
is linear, hence
(v, X
o CY.X) = C(BIYIX].X) = BV (X) = 1 = S
o E[Y] = E[E[Y|X]] = fo + P1E[X] = fo = E[Y] — fLE[X]
» E[Y|X] = L(Y|X) =840+ 1 X, where L(.) is the linear
projection

@UEL
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Simple Linear Regression: Assumptions

A3: Conditional Homoscedasticity = V(¢|X) = 02V X

» This implies V (¢) = o2

o V(e[ X) = E[2X] - B[(B[|X])] = B*|X] = o?
o E?|=F [E[€2|X]] = o?
o V(e) = E[s*] — (E[e])” = o?

» This also implies V(Y |X) = o2

@UEL
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Simple Linear Regression: Interpretation of

Coefficients

» From A1, we have Y = [y + 51X + ¢, if we take the
conditional expectation of both sides we get

EY|X] = FEl[po+ /X +¢]
Bo + B1E[X|X] + Ele|X](by A2)
= Bo+B4X

AE[Y|X
A[XH‘ That is, When X increases

by one unit, Y, on average, increases by (1 units.

» This implies: 61 =

@UEL
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Simple Linear Regression: Interpretation of

Coefficients

» ElYIX=01=E[By+ /1 X +e|X =0]= o
» B is the mean value of Y, when X =0
» [y is the intercept term

» In the case that X = 0 is not included in the range of X in
our data set, By has no interpretation

@UEL
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Simple Linear Regression: Interpretation of

Coefficients

» Notice that A2 also implies
E[Y|X] = fo+ /1 X = L(Y|X), that is, the best
prediction is the best linear prediction
» If A2 is not satisfied, then E[Y|X]| # L(Y|X). This
implies:
e = [y and fB; are only the parameters of a linear projection,
NOT of a conditional expectation
e = [y and {7 do not have causal interpretations

@UEL
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Simple Linear Regression: Example 3

Scatterplot - Two Variables

@UEL
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Simple Linear Regression: Example 3

v

The regression equation: Y = —226.53 + 13.10X (Assume
that all assumptions are met)

What is the interpretation of 13.107

Can we predict mean salary of a 0 years old person? Why?
Why not?
What is the interpretation of —226.537

v

v

v

@UEL
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SIMPLE LINEAR REGRESSION: THE ESTIMATION

@UEL
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Simple Linear Regression: Estimation

» Our Objective: Estimate the population parameters, i.e.,
B = (Bo, f1) and o?

» Our Model: Y = fy + 81X + ¢, where E[e|X] = 0 and
V(e|X) = o?

» Our Data: Pairs of (y;,2;) i = 1,2,...,n are the sample
realizations of population data (Y3, X;):

Y x
'A% Z1
Yz | T2
Yn | Tn

@UEL
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Simple Linear Regression: Estimation

» We need a method to estimate our population parameters
B = (Bo, 1) and o2, using our model Y; = By + B1X; + &;
foralli=1,2,...,n

» We need to distinguish between population parameters
B = (ﬁo, 51) and 0 and the estimated values, denoted as

B = (o, 41) and 62

@UEL
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Estimation: The Analogy Principle

» An approach for estimation

» Use the corresponding sample quantity as an estimate of
the population quantity

n
o Use sample mean Y = E g to estimate the population
n

i=1
mean

(- Y)”
o Use sample variance s = Z -

i=1

to estimate the
n—1

population variance

» Method of moments: Let p; = E[X?] be the i*" moment,
the by method of moments, we estimate u; by

n i
X

corresponding sample moment m; = E (zk)
mn

k=1

@UEL

40



Estimation: The Analogy Principle

> Recall the bets prediction and the best linear prediction.
Under our assumptions:

o E[Y[X] = L(Y|X) = fo+ 5 X

o Bo=E(Y) - b EX)

@UEL
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Estimation: The Analogy Principle

» then, by using the analogy principle we have:

o fo=Y - X

e 2?<X1-—X>2

@UEL
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Estimation: The Ordinary Least Squares (OLS)

» The idea of the (OLS) principle is to choose parameter
estimates that minimize the squared error term, i.e., the
distance between the data and the model

» min E[e?], or equivalently, min E | (Y — g + ﬁlX)2

» g =Y; — E[Y;|X]

@UEL
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The Ordinary Least Squares (OLS)

» For the sample data, we define the error term as
&=Y,-Y;, =Y, — fBo— f X

» Then the sample equivalent of min E[¢?] is

@UEL
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The Ordinary Least Squares (OLS)

» FOC are:
° Z?:l =0

° Z?:l EX; =0

» These FOC implies:
o fo=Y - X

N v Y = X
o B = ZZTL% = ZczYl where z; = (X; — X) and
Dim1 T i=1
Zq
G = 3
D T

@UEL
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The Ordinary Least Squares (OLS)

» Compare Least square estimators and analogy principle
estimators. are the similar?

» Predicted values: f/l = Bo — Ble'

» Predicted values are orthogonal to the predicted error term

@UEL
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Estimation Terminology

» Estimator is a RULE for calculating an estimate of a
parameter based on observed data, i.e., 60 =Y — ,61X

» Estimate is a number that is an outcome of an estimation
process, i.e, f1 = 0.003

@UEL
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The Properties of The OLS Estimators

P1 Linear in Y
> Bo=Y - X

> 1= > ciY;

@UEL
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The Properties of The OLS Estimators

P2 Unbiasedness: Expected value of the estimator is equal to
the parameter itself

» We achieve this property by A1 and A2

@UEL
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The Properties of The OLS Estimators

The unbiasedness property indicates that if we have infinitely
many samples of size-n from the same population and estimate
the same model with each of the samples:

» We will have a distribution of the estimator of 5;, with a
different realization for each sample

» The mean of that distribution will be the the population
parameter [3;
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The Properties of The OLS Estimators

B = ZCiYi

(]
= Z ci (Bo + B1Xi + &)
i
= BoY ci+th Y aXit ) cie
= 5 Z ciXi + Z Ci€; (because Z ci = 0)
= [+ Z CiE; (because Z cX; = 1>
i i
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The Properties of The OLS Estimators

E[Bl\X] = F

= p
ElB] = E[E[B|X]]
= E[A] =5
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The Properties of The OLS Estimators

The Variance

From A1, A2, and A3, we have

@UEL
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The Properties of The OLS Estimators

5 o? 1
Let’s show that V(81) = —FE | o5
n S%

B|(h-m)]-r (Z) ] = 3 Bl
BBl =8 S [53|X}]
_ E[Z] (by A3)

1
o2 1

Tt {s&]

V(5)

= o’FE
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The Properties of The OLS Estimators:

Gauss-Markov Theorem

» Under assumptions A1l to A3, the Gauss-Markov Theorem
states that the By and 5y are the efficient estimators among
all linear unbiased estimators

» By and Bo are the most efficient estimators among all the
linear unbiased estimators — Best Linear Unbiased
Estimator

@UEL
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The Properties of The OLS Estimators:

Gauss-Markov Theorem

» What does it mean to be a consistent estimator?
e [y and [y are consistent if
p lim B; = B;,j=0,1
n— 00
in other words,

Tim P (|6 -] <a) =1v5>0

» Consistency means the distributions of the estimators BO
and Bo become more and more concentrated near the true
values By and [y as sample size increases, so that the
probability of Bg and Bo being arbitrarily close to By and By
converges to one

» For these results, we need Al to A3 to met!!! @@@@
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The Variance of The OLS Estimators

» The variance of the OLS estimators,ﬁo and Bg, depends on
02 =V(e) = E[¢?]

» The problem is, the errors € = €1, €9, ...., &y, are not
observed, so we need to estimate ¢

£ = Y —Fy— X
= Bo+BX +e—Fo— X
= 5—(50—50>—(31—ﬁ1)X

» Even though E[§;] = §; for j = 0,1, E[¢] # ¢

@UEL
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The Variance of The OLS Estimators

» One attempt to estimate o2 would be to use (1\n) Y 2

instead of E[e?]. However, this is not feasible

» One attempt to estimate o would be using sample values
of the error, €, and use this to estimate the sample variance:
52 = (1\n) >_ 2. However, this is biased. The bias comes

from unmatched degrees of freedom and denominator

» When we account for this bias, we get a consistent and
unbiased estimate:

@UEL
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The Variance of The OLS Estimators

» Note that both of 6% and &2 are consistent and for larger
samples, their value is very close to each other.
2
- 1
> Recall that V(5;) = —E [2]
n S5
2

o We estimate V(B1) by 62 = V(3;) = ST
x

1

where E {}
%

is estimated by @

R X2
» Recall V(f) = >, #V(ﬁl)

) o 523, X2
o We estimate V() by 62 = V(B) = %
e

@UEL
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The Goodness of Fit Measures

» The goodness of fit measures are the measures of how well
our model fits the data.

» Standard error of regression, &, is one intuitive way of
approaching goodness of fit.

» Recall that in the standard simple linear regression, we
have Y = By + 81X + ¢ and V(g|X) = o2,

> One problem with this goodness of fit method is that its
magnitude heavily depends on the units of YV

@UEL
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The Goodness of Fit Measures

» Coefficient of Determination, R2, is a very common
measure of goodness of fit

> 1/12 > 3/12

° whereyi:}Q—Y,gizﬁ—?’,andei:)@—ﬁ

52
o Notice that y; = 9; + €;. This implies that 0 < zzzzy; <1
i Yi
o If R? = 1, the model explains all of the variation (100%) in
Y
o If R? = 0, the model explains none of the variation (0%) in
Y

@UEL
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The Goodness of Fit Measures

» A low R? implies:
o The model fails to explain a significant proportion of the
variation of Y.
o A low R2 does not necessarily mean that the estimates are
unhelpful or inappropriate.

» The R? can be used for comparing different models for the
same dependent variable Y.

» Also, for the correlation coefficient between actual and
estimated values of Y, py, ¢, we ahe the following
2
relationship: R? = (pAY}A,>
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