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Linear equations with one variable

Recall what a linear equation is:

I y = b0 + b1x is a linear equation with one variable, or
equivalently, a straight line.

I linear on x, we can think this as linear on its unknown
parameter, i.e., y = 1.3 + 3x

I b0 and b1 are constants, b0 is the y-intercept and b1 is the
slope of the line, y is the dependent variable, and x is the
independent variable

I slope of a line being b1 means for every 1 unit horizontal
increase there is a b1 unit vertical increase/decrease
depending on the sign of b1.
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Linear equations with one variable

I A linear equation is of deterministic nature ⇒ outcomes
are precisely determined without any random variation

I A given input will always produce the same output ⇒
perfect relationship

I In real life data, it is almost impossible to have such a
prefect relationship between two variables. We almost
always rely on rough predictions. One of our tools to do so
is regression.
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Empirical and Theoretical Relationships

I Economists are interested in the relationship between two
or more economic variables⇒ at least bivariate populations

I The economic theory in general suggests relationships in
functional forms (recall economic models). These relations
are deterministic, such as Y = f(X), or
Y = f (X1, X2, ...Xk)

I A given input will always produce the same output ⇒
perfect relationship
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Example 1: Study time and score

Let’s consider the following example. The table below shows
the data for total hours studied for a calculus test, x, and the
test scores, y.

Time Score
(x) (y)

10 92
15 81
12 84
20 74
8 85
16 80
14 84
22 80
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Example 1, cont’d

Consider the scatter plot based on the data of example 1. Does
it look like a perfect relationship?
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Example 2: Savings and income

I Relationship between savings (Y) and income (X)
(Goldberger, Chapter 1 of “A Course in Econometrics”,
Harvard U. Press. 1991)

Data from 1027 families, between 1960-1962, in the USA

I The joint distribution of savings and income are presented
in the next table ⇒ P (Y,X)

I For discrete case, P (Y,X) ⇒ P (Y = y andX = x).
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Example 2, cont’d

Table : Joint Distribution Y , savings, and X, income: P (Y,X)

X (in 1000 of Dollars)
Y 1.4 3.0 4.9 7.8 14.2 P (Y )

(Savings rate) (Sum of the Rows)

0.45 0.015 0.026 0.027 0.034 0.033 0.135
0.18 0.019 0.032 0.057 0.135 0.063 0.306
0.05 0.059 0.066 0.071 0.086 0.049 0.331

-0.11 0.023 0.035 0.045 0.047 0.015 0.165
-0.25 0.018 0.016 0.016 0.008 0.005 0.063

P (X) 0.134 0.175 0.216 0.310 0.165 1.000
(Sum of the Columns)
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Example 2, cont’d

I Among the information we can obtain from a joint
probability table, there are two that are of interest to us:

whether we can have a deterministic relationship, i.e.,
Y = f(X)
whether savings and income are independent

I Can we have a deterministic relationship between savings
and income based on the previous table?

No. In order to have a deterministic relationship, we need
to have a unique savings for each level of income, in other
words we need to have a functional relationship.
In terms of probability, for each income level, we need to
have only one savings level with positive probability!
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Example 2, cont’d

I But we do have a relationship between income level and
savings ⇒ As income increases, savings level increases.

I To further investigate this, lets calculate the conditional
distribution:

P (Y |X) =
P (Y,X)

P (X)

µ̂Y |X=x =
∑
y

yP (Y = y|X = x)
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Example 2, cont’d

Table : Conditional Distribution of Y , savings, given X, income:
P (Y |X)

X (in 1000)
Y 1.4 3.0 4.9 7.8 14.2

0.45 0.112 0.149 0.125 0.110 0.200
0.18 0.142 0.183 0.264 0.435 0.382
0.05 0.440 0.377 0.329 0.277 0.297

-0.11 0.172 0.200 0.208 0.152 0.091
-0.25 0.134 0.091 0.074 0.026 0.030

Column sum 1 1 1 1 1
µ̂Y |X 0.045 0.074 0.079 0.119 0.156

What is the relationship between the conditional mean and
income level?
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Empirical and Theoretical Relationships

I The empirical relationships between economic variables ⇒
not deterministic, but stochastic

I To combine theory and data, one must interpret the
economic theory in a different way

When the economic theory postulates that Y is a function
of X, Y = f(X), it implies that the expected value of Y is
a function of X, E[Y ] = f(X)
Y = f(X) ⇒ deterministic, E[Y ] = f(X) ⇒ stochastic
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Prediction

I When we are in a stochastic setting, we are in general
interested in prediction, but how do we form our
prediction?

I One way would be just to guess a number, but do you
think it will be good? How can we assess that it is good?

I We are interested in finding the best way of predicting
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Prediction

I Suppose we want to predict Y , using the information on X.
Let c(X) be a prediction

I Then, U = Y − c(X) will be our prediction error. We want
the expected value of the square of our prediction, E[U2]
error to be as small as possible

Why E[U2]?

Choose a prediction so that E[U2] =
∑
y∈Y

(y − c(X))
2
P (y)

is minimized
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Prediction: The best constant prediction

I We do not always have bivariate, or multivariate case,
sometimes we only have information on Y

I In these cases, our prediction does not depend on other
variables, so our prediction can be denoted as c

I Then we choose a prediction such that we minimize

E[U2] =
∑
y∈Y

(y − c)2 P (y) ⇒ c = E[Y ] = µY

I Average of Y is the best constant predictor
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Exercise 2, cont’d

Y (Saving rate) P (Y )

0.45 0.135
0.18 0.306
0.05 0.331
-0.11 0.165
-0.25 0.063

Then the best constant predictor for the saving rate is:

E[Y ] = 0.45 ∗ 0.135 + 0.18 ∗ 0.306 + 0.05 ∗ 0.331

− 0.11 ∗ 0.165− 0.25 ∗ 0.063

= 0.09848 = 9.85%
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Prediction: The best linear prediction

I In the case that we have bivariate data (Y,X), say savings
rate and income levels, then we can make use of the
relationship between them to predict Y

I Linear prediction implies that our c(X) is linear, i.e.,
c(X) = c0 + c1X

I So, we need to find c0 and c1 such that

E[U2] =
∑
y∈Y

(y − c(X))2 P (y) is minimized
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Prediction: The best linear prediction

I By replacing c(X) by c0 + c1X, and solving for the
minimization problem we get

c0 = α0 = E(Y )− α1E(X) = µY − α1µX

c1 = α1 =
C(X,Y )

V (X)
=
σXY
σ2
X

I The function α0 + α1X is the linear projection (or the
best linear prediction) of Y given
X ⇒ L(Y |X) = α0 + α1X
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Example 2, cont’d

I To get the best linear prediction for savings rate, we need
to calculate: E[X], E[Y ], E[XY ], C(X,Y ), E[X2], V (X)

I For E[XY ]:
XY P(XY) XY P(XY) XY P(XY) XY P(XY)

-3.55 0.005 -0.75 0.016 0.07 0.059 0.54 0.032
-1.95 0.008 -0.54 0.045 0.15 0.066 0.63 0.015
-1.56 0.015 -0.35 0.018 0.25 0.071 0.71 0.049
-1.23 0.016 -0.33 0.035 0.25 0.019 0.88 0.057
-0.86 0.047 -0.15 0.023 0.39 0.086 1.35 0.026

I E[XY ] =

5∑
i=1

5∑
j=1

XiYjP (XY = XiYj) = 0.783
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Example 2, cont’d

I E[X] = 1.4 ∗ 0.134 + 3.0 ∗ 0.175 + 4.9 ∗ 0.216 + 7.8 ∗ 0.310 +
14.2 ∗ 0.165 = 6.532

I C(X,Y ) = E[XY ]− E[X]E[Y ] =
0.782607− 6.532 ∗ 0.09848 = 0.13934

I E[X2] = 1.422 ∗ 0.134 + 3.022 ∗ 0.175 + 4.922 ∗ 0.216 +
7.822 ∗ 0.310 + 14.222 ∗ 0.165 = 59.155

I V (X) = E[X2]− (E[X])2 = 59.155− 6.53222 = 16.488

I c0 = α0 = E(Y )− α1E(X) = 0.0433

I c1 = α1 =
C(X,Y )

V (X)
= 0.00845
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Example 2, cont’d

I L(Y |X) = 0.043278 + 0.008451X

I The for discrete values of X, we get

L(Y |X) =


0.043278 + 0.008451 ∗ 3.0 = 0.069 if X = 3.0

0.043278 + 0.008451 ∗ 4.9 = 0.085 if X = 4.9

0.043278 + 0.008451 ∗ 7.8 = 0.1092 if X = 7.8

0.043278 + 0.008451 ∗ 14.2 = 0.1633 if X = 14.2
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Best Prediction

I So far we considered best constant predictor, and best
linear predictor

I Let’s relax the linearity restriction on c(X), i.e., c(X) can
be any function that minimizes E[U2]

I The best predictor of Y then becomes the conditional
expected value of Y , E[Y |X]

If the E[Y |X] is linear, then E[Y |X] and L(Y |X) are the
same. The reverse is NOT true!!!
If the E[Y |X] is NOT linear, then L(Y |X) is the best
linear approximation to E[Y |X]
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Example 2, cont’d

X (income) c L(Y |X) E[Y |X]
(in $1000s) BCP BLP BP

1.4 0.0985 0.055 0.045
3.0 0.0985 0.069 0.074
4.9 0.0985 0.085 0.079
7.8 0.0985 0.1092 0.119
14.2 0.0985 0.1633 0.156
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Prediction

I Whenever L(Y |X) 6= E[Y |X], L(Y |X) provides a good
approximation to E[Y |X], hence can be used in some
circumstances

I However, E[Y |X] characterizes conditional mean of Y
given X, the L(Y |X) does not ⇒ E[Y |X] can have causal
interpretation, the L(Y |X) can not
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SIMPLE LINEAR REGRESSION (SLR)
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Simple Linear Regression

I Our big goal to analyze and study the relationship between
two variables

I One approach to achieve this is simple linear regression, i.e,
Y = β0 + β1X + ε

I While answering our question, a simple linear regression
model addresses some issues:

1. How to deal with the factors other than X that effects Y
2. How to formulate the relationship between X and Y
3. Whether our model captures a ceteris paribus relationship

between X and Y
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Simple Linear Regression

SLR Model: Y = β0 + β1X + ε

I Y ⇒ Dependent variable, endogenous variable, response
variable, regressand ...

I X ⇒ Independent variable , exogenous variable, control
variable, regressor ...

I β = (β0, β1) ⇒ Parameter vector, population parameters

I ε ⇒ Error term
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Simple Linear Regression: Assumptions

A1: Linear in parameters

I It implies that a unit change in X has the same effect on
Y , independently of the initial value of X.

I SLR is linear in parameters:

The following are linear in parameters: Y = β0 + β1X + ε,

Y = β0X
2 + β1

Z

logZ
+ ε

The following is NOT linear in parameters: Y = β1X
β2ε

I Violations of this assumption are form of a “specification
errors, such as nonlinearity (when the relationship is not
linear in parameters)

I We can overcome the limitations this assumption imposes
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Simple Linear Regression: Assumptions

A2: E[ε|X] = 0

I For the all values of X, the mean error rate is same and
equal to 0.

I E[ε|X] = 0 implies for any function h(), C(h(X), ε) = 0.
Hence, ε is not correlated with any function of X

I In particular, C(X, ε) = 0

C(X, ε) = E[Xε]− E[X]E[ε]

E[Xε] = E[E[Xε|X]] = E[XE[ε|X]] = 0

E(X)E(ε) = 0
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Simple Linear Regression: Assumptions

I E[Y |X] = β0 + β1X, the conditional expectation function
is linear, hence

C(Y,X) = C (E[Y |X], X) = β1V (X)⇒ β1 =
C(Y,X)

V (X)
E[Y ] = E [E[Y |X]] = β0 + β1E[X]⇒ β0 = E[Y ]− β1E[X]

I E[Y |X] = L(Y |X) = β + 0 + β1X, where L(.) is the linear
projection
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Simple Linear Regression: Assumptions

A3: Conditional Homoscedasticity ⇒ V (ε|X) = σ2 ∀X

I This implies V (ε) = σ2

V (ε|X) = E[ε2|X]− E [(E[ε|X])] = E[ε2|X] = σ2

E[ε2] = E
[
E[ε2|X]

]
= σ2

V (ε) = E[ε2]− (E[ε])
2

= σ2

I This also implies V (Y |X) = σ2
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Simple Linear Regression: Interpretation of
Coefficients

I From A1, we have Y = β0 + β1X + ε, if we take the
conditional expectation of both sides we get

E[Y |X] = E [β0 + β1X + ε]

= β0 + β1E[X|X] + E[ε|X](by A2)

= β0 + β1X

I This implies: β1 =
∆E[Y |X]

∆X
. That is, When X increases

by one unit, Y , on average, increases by β1 units.
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Simple Linear Regression: Interpretation of
Coefficients

I E[Y |X = 0] = E [β0 + β1X + ε|X = 0] = β0

I β0 is the mean value of Y , when X = 0

I β0 is the intercept term

I In the case that X = 0 is not included in the range of X in
our data set, β0 has no interpretation
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Simple Linear Regression: Interpretation of
Coefficients

I Notice that A2 also implies
E[Y |X] = β0 + β1X = L(Y |X), that is, the best
prediction is the best linear prediction

I If A2 is not satisfied, then E[Y |X] 6= L(Y |X). This
implies:

⇒ β0 and β1 are only the parameters of a linear projection,
NOT of a conditional expectation
⇒ β0 and β1 do not have causal interpretations
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Simple Linear Regression: Example 3
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Consider the data plotted above, Y represents salary and X
represents age
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Simple Linear Regression: Example 3

I The regression equation: Y = −226.53 + 13.10X (Assume
that all assumptions are met)

I What is the interpretation of 13.10?

I Can we predict mean salary of a 0 years old person? Why?
Why not?

I What is the interpretation of −226.53?
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SIMPLE LINEAR REGRESSION: THE ESTIMATION
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Simple Linear Regression: Estimation

I Our Objective: Estimate the population parameters, i.e.,
β = (β0, β1) and σ2

I Our Model: Y = β0 + β1X + ε, where E[ε|X] = 0 and
V (ε|X) = σ2

I Our Data: Pairs of (yi, xi) i = 1, 2, ..., n are the sample
realizations of population data (Yi, Xi):

y x
y1 x1
y2 x2
. .
. .
. .
yn xn
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Simple Linear Regression: Estimation

I We need a method to estimate our population parameters
β = (β0, β1) and σ2, using our model Yi = β0 + β1Xi + εi
for all i = 1, 2, ..., n

I We need to distinguish between population parameters
β = (β0, β1) and σ2 and the estimated values, denoted as
β̂ = (β̂0, β̂1) and σ̂2

39



Estimation: The Analogy Principle

I An approach for estimation

I Use the corresponding sample quantity as an estimate of
the population quantity

Use sample mean Ȳ =
n∑
i=1

yi
n

to estimate the population

mean

Use sample variance s2 =
n∑
i=1

(
yi − Ȳ

)2
n− 1

to estimate the

population variance

I Method of moments: Let µi = E[Xi] be the ith moment,
the by method of moments, we estimate µi by

corresponding sample moment mi =

n∑
k=1

(xk)
i

n
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Estimation: The Analogy Principle

I Recall the bets prediction and the best linear prediction.
Under our assumptions:

E[Y |X] = L(Y |X) = β0 + β1X

β0 = E(Y )− β1E(X)

β1 =
C(X,Y )

V (X)

41



Estimation: The Analogy Principle

I then, by using the analogy principle we have:

β̂0 = Ȳ − β̂1X̄

β̂1 =

∑n
i (Xi − X̄)(Yi − Ȳ )∑n

i (Xi − X̄)2
=

1
n

∑n
i (Xi − X̄)Yi

1
n

∑n
i (Xi − X̄)2

=
SXY
S2
X
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Estimation: The Ordinary Least Squares (OLS)

I The idea of the (OLS) principle is to choose parameter
estimates that minimize the squared error term, i.e., the
distance between the data and the model

I minE[ε2], or equivalently, minE
[
(Y − β0 + β1X)2

]
I εi = Yi − E[Yi|Xi]
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The Ordinary Least Squares (OLS)

I For the sample data, we define the error term as

ε̂i = Yi − Ŷi = Yi − β̂0 − β̂1Xi

I Then the sample equivalent of minE[ε2] is

min
β0,β1

1

n

n∑
i=1

ε̂2i
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The Ordinary Least Squares (OLS)

I FOC are:∑n
i=1 ε̂ = 0

∑n
i=1 ε̂Xi = 0

I These FOC implies:

β̂0 = Ȳ − β̂1X̄

β̂1 =

∑n
i=1 xiYi∑n
i=1 x

2
i

=
n∑
i=1

ciYi where xi = (Xi − X̄) and

ci =
xi∑n
i=1 x

2
i
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The Ordinary Least Squares (OLS)

I Compare Least square estimators and analogy principle
estimators. are the similar?

I Predicted values: Ŷi = β̂0 − β̂1Xi

I Predicted values are orthogonal to the predicted error term
⇒
∑

i Ŷiε̂i = 0
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Estimation Terminology

I Estimator is a RULE for calculating an estimate of a
parameter based on observed data, i.e., β̂0 = Ȳ − β̂1X̄

I Estimate is a number that is an outcome of an estimation
process, i.e, β̂1 = 0.003
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The Properties of The OLS Estimators

P1 Linear in Y

I β̂0 = Ȳ − β̂1X̄

I β̂1 =
∑

i ciYi
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The Properties of The OLS Estimators

P2 Unbiasedness: Expected value of the estimator is equal to
the parameter itself

I We achieve this property by A1 and A2

I E[β̂0] = β0

I E[β̂1] = β1
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The Properties of The OLS Estimators

The unbiasedness property indicates that if we have infinitely
many samples of size-n from the same population and estimate
the same model with each of the samples:

I We will have a distribution of the estimator of βl, with a
different realization for each sample

I The mean of that distribution will be the the population
parameter βl
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The Properties of The OLS Estimators

E[β̂1] = β1

β̂1 =
∑
i

ciYi

=
∑
i

ci (β0 + β1Xi + εi)

= β0
∑
i

ci + β1
∑
i

ciXi +
∑
i

ciεi

= β1
∑
i

ciXi +
∑
i

ciεi

(
because

∑
i

ci = 0

)

= β1 +
∑
i

ciεi

(
because

∑
i

ciXi = 1

)
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The Properties of The OLS Estimators

E[β̂1|X] = E

[
β1 +

∑
i

ciεi|X

]
= β1 +

∑
i

ciE[εi|X]︸ ︷︷ ︸
0

= β1

E[β1] = E [E[β1|X]]

= E[β1] = β1
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The Properties of The OLS Estimators

The Variance

From A1, A2, and A3, we have

I V (β̂0) =
∑

i

X2
i

n
V (β̂1)

I V (β̂1) =
σ2

n
E

[
1

S2
X

]
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The Properties of The OLS Estimators

Let’s show that V (β̂1) =
σ2

n
E

[
1

S2
X

]

V (β̂1) = E

[(
β̂1 − β1

)2]
= E

(∑
i

ciεi

)2
 =

∑
i

E[c2i ε
2
i ]

= E

[∑
i

E
[
c2i ε

2
i |X

]]
= E

[∑
i

c2iE
[
ε2i |X

]]

= σ2E

[∑
i

c2i

]
(by A3)

= σ2E

[∑
i

(
xi∑
i x

2
i

)2
]

= σ2E

[∑
i

1
n

1
n(
∑

i x
2
i )

2

]

=
σ2

n
E

[
1

S2
X

]
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The Properties of The OLS Estimators:
Gauss-Markov Theorem

I Under assumptions A1 to A3, the Gauss-Markov Theorem
states that the β̂0 and β̂0 are the efficient estimators among
all linear unbiased estimators

I β̂0 and β̂0 are the most efficient estimators among all the
linear unbiased estimators → Best Linear Unbiased
Estimator
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The Properties of The OLS Estimators:
Gauss-Markov Theorem

I What does it mean to be a consistent estimator?
β̂0 and β̂0 are consistent if

p lim
n→∞

β̂j = βj , j = 0, 1

in other words,

lim
n→∞

P
(∣∣∣β̂j − βj∣∣∣ < δ

)
= 1 ∀δ > 0

I Consistency means the distributions of the estimators β̂0
and β̂0 become more and more concentrated near the true
values β0 and β0 as sample size increases, so that the
probability of β̂0 and β̂0 being arbitrarily close to β0 and β0
converges to one

I For these results, we need A1 to A3 to met!!!
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The Variance of The OLS Estimators

I The variance of the OLS estimators,β̂0 and β̂0, depends on
σ2 = V (ε) = E[ε2]

I The problem is, the errors ε = ε1, ε2, ...., εn are not
observed, so we need to estimate ε

ε̂ = Y − β̂0 − β̂1X
= β0 + β1X + ε− β̂0 − β̂1X

= ε−
(
β̂0 − β0

)
−
(
β̂1 − β1

)
X

I Even though E[β̂j ] = βj for j = 0, 1, E[ε̂] 6= ε
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The Variance of The OLS Estimators

I One attempt to estimate σ2 would be to use (1\n)
∑
ε2

instead of E[ε2]. However, this is not feasible

I One attempt to estimate σ2 would be using sample values
of the error, ε̂, and use this to estimate the sample variance:
σ̃2 = (1\n)

∑
ε2. However, this is biased. The bias comes

from unmatched degrees of freedom and denominator

I When we account for this bias, we get a consistent and
unbiased estimate:

σ̂2 =
∑
i

ε2i
n− 2
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The Variance of The OLS Estimators

I Note that both of σ̂2 and σ̃2 are consistent and for larger
samples, their value is very close to each other.

I Recall that V (β̂1) =
σ2

n
E

[
1

S2
X

]
We estimate V (β̂1) by σ̂2 ⇒ V̂ (β̂1) =

σ̂2

nS2
X

, where E

[
1

S2
X

]
is estimated by

1

S2
X

I Recall V (β̂0) =
∑

i

X2
i

n
V (β̂1)

We estimate V (β̂0) by σ̂2 ⇒ V̂ (β̂0) =
σ̂2
∑
iX

2
i

n2S2
X
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The Goodness of Fit Measures

I The goodness of fit measures are the measures of how well
our model fits the data.

I Standard error of regression, σ̂, is one intuitive way of
approaching goodness of fit.

I Recall that in the standard simple linear regression, we
have Y = β0 + β1X + ε and V (ε|X) = σ2.

I One problem with this goodness of fit method is that its
magnitude heavily depends on the units of Y
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The Goodness of Fit Measures

I Coefficient of Determination, R2, is a very common
measure of goodness of fit

R2 =

∑
i ŷ

2
i∑

i y
2
i

= 1−
∑

i ε
2
i∑

i y
2
i

(1)

where yi = Yi − Ȳ , ŷi = Ŷi − Ȳ , and εi = Yi − Ŷi
Notice that yi = ŷi + εi. This implies that 0 ≤

∑
i ŷ

2
i∑

i y
2
i

≤ 1

If R2 = 1, the model explains all of the variation (100%) in
Y
If R2 = 0, the model explains none of the variation (0%) in
Y

61



The Goodness of Fit Measures

I A low R2 implies:

The model fails to explain a significant proportion of the
variation of Y.
A low R2 does not necessarily mean that the estimates are
unhelpful or inappropriate.

I The R2 can be used for comparing different models for the
same dependent variable Y.

I Also, for the correlation coefficient between actual and
estimated values of Y , ρY,Ŷ , we ahe the following

relationship: R2 =
(
ρ̂Y,Ŷ

)2
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