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The Multiple Linear Regression Model

I Many economic problems involve more than one exogenous
variable affects the response variable

Demand for a product given prices of competing brands,
advertising,house hold attributes, etc.
Production function

I In SLR, we had Y = β0 + β1X1 + ε. Now, we are interested
in modeling Y with more variables, such as X2, X3, . . . , Xk

Y = β0 + β1X1 + β2X2 + . . .+ βkXk + ε
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Example 1: Crimes on campus

Consider the scatter plots: Crime vs. Enrollment and Crime vs.
Police
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The Multiple Linear Regression Model

I Y = β0 + β1X1 + β2X2 + . . .+ βkXk + ε

The slope terms βj , j = 1, . . . k are interpreted as the
partial effects, or ceteris paribus effects, of a change in the
corresponding Xj

When the assumptions of MLR are met, this interpretation
is correct although the data do not come from an
experiment ⇒ the MLR reproduces the conditions similar
to a controlled experiment (holding other factors constant)
in a non-experimental setting.

I X1 is not independent of X2, X3, . . . , Xk.
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Example 1, cont’d

Consider the scatter plot: Enrollment vs. Police
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Example 2: Effect of education on wages

I Let Y be the wage and X1 be the years of education

I Even though our primary interest is to assess the effects of
education, we know that other factors, such as gender
(X2), work experience (X3), and performance (X4), can
influence the wages

I Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε

I Do you think education and the other factors are
independent?

I β1: the partial effect of education, holding experience,
gender and performance constant. In SLR, we have no
control over these factors since they are part of the error
term.
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Example 3: Effect of rooms on price of a house

I Suppose we have data on selling prices of apartments in
different neighborhoods of Madrid

I We are interested in the effect of number of bedrooms on
these prices

I But the number of bathrooms also influence the price

I Moreover, as the number of rooms increase, number of
bathrooms may increase as well, i.e., it is hard to see an
one-bedroom apartment with two bathrooms.
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The Multiple Linear Regression Model:
Assumptions

I A1: Linear in parameters

I A2: E[ε|X1,X2, . . . ,Xk] = 0

For a given combination of independent variables,
(X1, X2, . . . , Xk), the average of the error term is equal to 0.
This assumption have similar implications as in SLR,

1. E[ε] = 0
2. For any function h(), C(h(Xj), ε) = 0 for all

j ∈ {1, 2, . . . , k} ⇒ C(Xj , ε) = 0 for all j ∈ {1, 2, . . . , k}
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The Multiple Linear Regression Model:
Assumptions

I A3: Conditional Homoscedasticity ⇒ Given
X1, X2, . . . , Xk, variance of ε and/or Y are the same for all
observations.

V (ε|X1, X2, . . . , Xk) = σ2

V (Y |X1, X2, . . . , Xk) = σ2

I A4: No Perfect Multicolinearity: None of the
X1, X2, . . . , Xk can be written as linear combinations of the
remaining X1, X2, . . . , Xk.
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The Multiple Linear Regression Model:
Assumptions

I From A1 and A2, we have a conditional expectation
function (CEF) such that
E[Y |X1, X2, . . . , Xk] = β0 + β1X1 + β2X2 + . . .+ βkXk + ε

Then, CEF gives us the conditional mean of Y for this
specific subpopulation
Recall that E[Y |X1, X2, . . . , Xk] is the best prediction
(achieved via minimizing E[ε2])
MLR is similar to the SLR in the sense that under the
linearity assumption, best prediction and best linear
prediction do coincide.
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The Multiple Linear Regression Model: Two
Variable Case

I Let’s consider the MLR model with two independent
variables. Our model is of the form
Y = β0 + β1X1 + β2X2 + ε

I Recall the housing price example, where Y is the selling
price, X1 is the number of bedrooms, and X2 is the number
of bathrooms
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The Multiple Linear Regression Model: Two
Variable Case

I Then, we have E [Y |X1, X2] = β0 + β1X1 + β2X2, hence

E [Y |X1, X2 = 0] = β0 + β1X1

E [Y |X1, X2 = 1] = (β0 + β2) + β1X1

I This implies that, holding X1 constant, the change in
E [Y |X1, X2 = 0]−E [Y |X1, X2 = 1] is equal to β2, or more
generally, β2∆X2
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The Multiple Linear Regression Model:
Interpretation of Coefficients

I More generally, when everything else held constant, a
change in Xj results in ∆E [Y |X1, . . . , Xk] = βj∆Xj . In
other words:

βj =
∆E [Y |X1, . . . , Xk]

∆Xj

I Then, βj can be interpreted as follows: When Xj increases
by one unit, holding everything else constant, Y , on
average, increases by varies, βj units.

I Do you think the multiple regression of Y on X1, . . . , Xk is
equivalent to the individual simple regressions of Y on
X1, . . . , Xk seperately? WHY or WHY NOT?
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The Multiple Linear Regression Model:
Interpretation of Coefficients

I Recall Example 3. In the model Y = β0 + β1X1 + β2 + ε,
where X1 is the number of bedrooms, and X2 is the
number of bathrooms

β1 is the increase in housing prices, on average, for an
additional bedroom while holding the number of bathrooms
constant, in other worlds, for the apartments with the same
number of bathrooms

I If we were to perform a SLR, Y = α0 +α1X1 + ε, where X1

is the number of bedrooms
α1 is the increase in housing prices, on average, for an
additional bedroom.
Notice that in this regression we have no control over
number of bathrooms. In other words, we ignore the
differences due to the number of bathrooms

I βj partial regression coefficient14



The Multiple Linear Regression Model: Full
Model vs Reduced Model

I Recall our model with two independent variables:
Y = β0 + β1X1 + β2X2 + ε, where
E [Y |X1, X2] = β0 + β1X1 + β2X2

I In this model, the parameters satisfy:

E[ε] = 0 ⇒ β0 = E[Y ]− β1E[X1]− β2E[X2] (1)

C(X1, ε) = 0 ⇒ β1V (X1) + β2C(X1, X2) = C(X1, Y )(2)

C(X2, ε) = 0 ⇒ β1C(X1, X2) + β2V (X2) = C(X2, Y )(3)
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The Multiple Linear Regression Model: Full
Model vs Reduced Model

I From these equations, we then get

β1 =
V (X2)C(X1, Y )− C(X1, X2)C(X2, Y )

V (X1)V (X2)− [C(X1, X2)]2

β2 =
V (X1)C(X2, Y )− C(X1, X2)C(X1, Y )

V (X1)V (X2)− [C(X1, X2)]2

I Notice that if C(X1, X2) = 0, these parameters are
equivalent to SLR of Y on X1 and X2, respectively, i.e.,

β1 =
C(X1, Y )

V (X1)
and β2 =

C(X2, Y )

V (X2)

16



The Multiple Linear Regression Model: Full
Model vs Reduced Model

I Assume we are interested in the effect of X1 on Y , and
concerned that X1 and X2 may be correlated. Then a SLR
does not give us the effect we want.

I Define the model L(Y |X1) = α0 + α1X1 as the reduced
model (We also could have considered reduced model with
X2 as our independent variable, results would have been
the same). Then α0 and α1 satisfy the following equations:

E[ε] = 0 ⇒ α0 = E[Y ]− α1E[X1] (4)

C(X1, ε) = 0 ⇒ α1 =
C(X1, Y )

V (X1)
(5)
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The Multiple Linear Regression Model: Full
Model vs Reduced Model

I Using equations (2) and (5) we get:

α1 =
C(X1, Y )

V (X1)
=
β1V (X1) + β2C(X1, X2)

V (X1)
= β1+β2

C(X1, X2)

V (X1)

I Notice the following:

1. α1 = β1 only if when C(X1, X2) = 0 OR when β2 = 0

2.
C(X1, X2)

V (X1)
is the slope for the prediction

L(X2|X1) = γ0 + γ1X1
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Review

I Our model: Yi = β0 + β1X1i + β2X2i + . . .+ βkXki + εi
We want X1 and X2, . . . , Xk NOT to be independent

I Assumptions:

A1 to A3 ⇒ similar to SLR
A4: No perfect multicollinearity

I For example, we don’t have a case like X1i = 2X2i + 0.5X3i

for all i = 1, . . . , n
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Review

I Interpretation

Model Coefficient of X1

Yi = α0 + α1X1i + εi For one unit increase
in X1, Y , on average,
increases by α1 units

Yi = β0 + β1X1i + β2X2i + εi For one unit increase in X1,
holding everything else
constant, Y , on average,
increases by β1 units
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Review

I Full Model vs Reduced Model - focusing on two variable
case

Full Model: Yi = β0 + β1X1i + β2X2i + εi
Reduced Model: Yi = α0 + α1X1i + εi
Reduced model cannot control for X2, cannot hold it
constant, and see the effects of X1, holding X2 constant

I α1 =
C(X1, Y )

V (X1)
=
β1V (X1) + β2C(X1, X2)

V (X1)
=

β1 + β2
C(X1, X2)

V (X1)
α1 reflects the effect of X1, holding X2 constant, plus

β2
C(X1, X2)

V (X1)
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Review: An Example

I Model Yi = β0 + β1X1i + β2X2i + εi, where Y is the
University GPA, X1 is the high school GPA, and X2 is the
total SAT score.

Coefficient Std. Error t-ratio p-value

const −0.0881312 0.286664 −0.3074 0.7592
HighSGPA 0.407113 0.0905946 4.4938 0.0000
SATtotal 0.00121666 0.000301086 4.0409 0.0001
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Review: An Example

Coefficient Std. Error t-ratio p-value

const 0.822036 0.190689 4.3109 0.0000
HighSGPA 0.565491 0.0878337 6.4382 0.0000

Coefficient Std. Error t-ratio p-value

const 0.151892 0.307993 0.4932 0.6230
SATtotal 0.00180201 0.000296847 6.0705 0.0000
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Review: An Example

Table : Dependent variable: HighSGPA

Coefficient Std. Error t-ratio p-value

const 0.589574 0.314040 1.8774 0.0634
SATtotal 0.00143780 0.000302675 4.7503 0.0000
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MULTIPLE LINEAR REGRESSION: THE ESTIMATION
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The Multiple Linear Regression Model:
Estimation

I Our Objective: Estimate the population parameters, i.e.,
β = (β0, . . . , βk) and σ2

I Our Model: Y = β0 + β1X1 + . . .+ βkXk + ε, where
E[ε|X] = 0 and V (ε|X) = σ2

I Our Data: Pairs of (yi, x1i, x2i, . . . , xki) i = 1, 2, ..., n are a
random sample of population data (Yi, X1i, . . . , Xki):

y x1 . . . xk
y1 x11 . . . xk1
y2 x12 . . . xk2
. . . .
. . . .
. . . .
yn x1n . . . xkn
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The Multiple Linear Regression Model:
Estimation

I Given our model and the sample data, we can write our
model as: Yi = β0 + β1X1i + β2X2i + . . .+ βkXki + εi, for
i = 1, . . . , n

I Our model satisfies our assumptions A1-A4
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OLS for The Multiple Linear Regression Model

I We obtain the estimators β̂0, β̂1, . . . , β̂k by solving the
equation below

min
β0,...,βk

1

n

n∑
i=1

ε̂2i where ε̂i = Yi−Ŷi = Yi−β̂0−β̂1X1i−. . .−β̂kXki
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OLS for The Multiple Linear Regression Model

I The first-order conditions are:
∑n

i=1 ε̂i = 0,∑n
i=1 ε̂iX1i = 0,

∑n
i=1 ε̂iX2i = 0′ . . . ,

∑n
i=1 ε̂iXki = 0

I Or equivalently, by using xji = (Xji − X̄j) (where
j = 1, . . . , k and i = 1, . . . , n) the FOC can be expressed as:
1
n

∑n
i=1 ε̂i = 0, and

1

n

n∑
i=1

ε̂ix1i = 0

1

n

n∑
i=1

ε̂ix2i = 0

. . . . . . . . .

1

n

n∑
i=1

ε̂ixki = 0

I Notice that (1) implies that sample mean of the residuals is
zero, and the rest imply that the sample covariance
between the residuals and Xj ’s are equal to 0.29



OLS for The Multiple Linear Regression Model

I Notice that these first order conditions are sample analogue
of the first-order conditions for classical regression model
with population β’s: E[ε] = 0

C (X1, ε) = 0

C (X2, ε) = 0

. . . . . . . . .

C (Xk, ε) = 0
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OLS for The Multiple Linear Regression Model

I The system of equations, also known as normal equations,
are

nβ̂0 + β̂1
∑
i

X1i + β̂2
∑
i

X2i + . . .+ β̂k
∑
i

Xki =
∑
i

Yi

β̂1
∑
i

x21i + β̂2
∑
i

x1ix2i + . . .+ β̂k
∑
i

x1ixki =
∑
i

x1iYi

β̂1
∑
i

x1ix2i + β̂2
∑
i

x22i + . . .+ β̂k
∑
i

x2ixki =
∑
i

x2iYi

. . . . . . . . .

β̂1
∑
i

x1ixki + β̂2
∑
i

xkix2i + . . .+ β̂k
∑
i

x2ki =
∑
i

xkiYi
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OLS for The Multiple Linear Regression Model

I In general, for k variables, we will have a linear system
with k + 1 equations with unknowns k + 1: (β0, β1, . . . , βk)

I This system of linear equations will have a unique solution
only if A4 holds ⇒ no perfect multicollinearity

I If A4 does NOT hold, then we will have infinitely many
solutions
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OLS for The Multiple Linear Regression Model:
Two Variable Case

I Let’s consider model with two variables:
Y = β0 + β1X1 + β2X2 + ε

I Then the population parameters will have the following
form:

β0 = E[Y ]− β1E[X1]− β2E[X2]

β1 =
V (X2)C(X1, Y )− C(X1, X2)C(X2, Y )

V (X1)V (X2)− [C(X1, X2)]2

β2 =
V (X1)C(X2, Y )− C(X1, X2)C(X1, Y )

V (X1)V (X2)− [C(X1, X2)]2
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OLS for The Multiple Linear Regression Model:
Two Variable Case

I When we apply the analogy principle, we get:

β̂0 = Ȳ − β1X̄1 − β2X̄2

β̂1 =
S2
X2
SX1,Y − SX1,X2SX2,Y

S2
X1
S2
X2
− (SX1,X2)2

β̂2 =
S2
X1
SX2,Y − SX1,X2SX1,Y

S2
X1
S2
X2
− (SX1,X2)2
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OLS for The Multiple Linear Regression Model:
Two Variable Case

I where

S2
X1

=
1

n

∑
i

(X1i − X̄1)
2 S2

X2
=

1

n

∑
i

(X2i − X̄2)
2

SX1,X2 =
1

n

∑
i

(X1i − X̄1)(X2i − X̄2)

SX1,Y =
1

n

∑
i

(X1i − X̄1)(Yi − Ȳ )

SX2,Y =
1

n

∑
i

(X2i − X̄2)(Yi − Ȳ )

I The slope estimators β̂1 and β̂2 measure the partial effect
of X1 and X2 on the mean value of Y , respectively.

35



Properties of the OLS Estimators

The properties of OLS estimators under multiple linear
regression model is similar to those under simple linear
regression model. The verification of these properties is similar
to SLR case.

1. OLS estimators are linear in Y

2. OLS estimators are unbiased (Expected value of the
estimator is equal to the parameter itself) under A1, A2,
and A4.

3. Under assumptions A1 to A4, the Gauss-Markov Theorem
states that the β̂0, β̂1, . . . , β̂k have the minimum variance
among all linear unbiased estimators

4. OLS estimators are consistent
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Properties of the OLS Estimators: The Variance

I Using A1, A2 and A3, we have:

I V (β̂j) =
σ2

nS2
j

(
1−R2

j

) =
σ2∑

i x
2
ji

(
1−R2

j

) , where

j = 1, . . . , k

S2
j =

1

n

∑
i x

2
ji =

1

n

∑
i

(
Xji − X̄j

)2
R2
j is the coefficient of determination for the linear

projection of Xj on all other independent variables:
X1, . . . , Xj−1, Xj+1, . . . , Xk such that:

Xj = θ0 +θ1X1 + . . .+θj−1Xj−1 +θj+1Xj+1 + . . .+θkXk+u
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Properties of the OLS Estimators: The Variance

I R2
j measures the proportion of information of variable Xj

that is already contained in other variables.

I Them
(

1−R2
j

)
measures the proportion of information of

variable Xj that is NOT explained by any other variable.

R2
j = 1 is NOT possible, because it would imply that Xj is

an exact linear combination of the other independent
variables. This is ruled out by A4
If R2

j is close to 1, however, V (β̂j) would be very high.

On the contrary, if R2
j = 0, then this implies that the

correlation of Xj with the other independent variables is 0.

In this case, then V (β̂j) would be minimum.
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Properties of the OLS Estimators: The Variance

I Intuitively,

When S2
j is higher ⇒ Sample variance of Xj is higher AND

V (β̂j) would be lower ⇒ more precise estimator

When the sample size, n, increases, V (β̂j) will be smaller ⇒
more precise estimator
When R2

j is higher, V (β̂j) will be bigger ⇒ less precise
estimator

I For proof, see Wooldridge (Since the order of the
explanatory variables is arbitrary, the proof for β̂1 can be
extended to β̂2, . . . , β̂k, without loss of generality)
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Estimation of the Variance

I Estimation of σ2 is similar to the case in simple linear
regression.

I One attempt to estimate σ2 would be to use (1\n)
∑

i ε
2
i

instead of E[ε2]. However, we do not know the population
values for ε

I We could use sample values of the error, ε̂ where

ε̂i = Yi −
(
β̂0 + β̂1X1i + . . .+ β̂kXki

)
I We can use ε̂i’s to estimate the sample variance:

σ̃2 = (1\n)
∑
i

ε̂2i
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The Variance of The OLS Estimators

I However, σ̃2 is a biased estimator, because the residuals
satisfy (k + 1) linear restrictions:∑

i

ε̂2 = 0,
∑
i

ε̂2X1i = 0, . . . ,
∑
i

ε̂2Xki = 0

Thus the degrees of freedom left for residuals is
(n− (k + 1))

I When we account for this bias, we get an unbiased
estimate:

σ̂2 =
∑
i

ε2i
n− k − 1

I Notice that both of σ̂2 and σ̃2 are consistent and for larger
samples, their value is very close to each other.
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Estimation of the Variance

I Recall that V (β̂j) =
σ2

nS2
j

(
1−R2

j

)
I We estimate V (β̂j) by:

V̂ (β̂j) =
σ̂2

nS2
j

(
1−R2

j

) where

S2
j =

1

n

∑
i x

2
ji =

1

n

∑
i

(
Xji − X̄j

)2
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Goodness of Fit Measures

I One GOF measure is the standard error of the
regression:

√
σ̂2 = σ̂ =

√∑
i

ε2i
n− k − 1
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Goodness of Fit Measures

I R2, the coefficient of determination, is another measure
of goodness of fit, similar to SLR case.

R2 =

∑
i ŷ

2
i∑

i y
2
i

= 1−
∑

i ε
2
i∑

i y
2
i

, 0 ≤ R2 ≤ 1

where yi = Yi − Ȳ , ŷi = Ŷi − Ȳ , and εi = Yi − Ŷi

I The interpretation of R2 is similar to the SLR model. It
measures the proportion of the variability of Y explained
by our model.
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Goodness of Fit Measures

I The R2 can be used to compare different models with the
same dependent (endogenous) variable Y

I The R2 weakly increases as the number of independent
variables increases, i.e., by adding one more variable, we
get R2

new ≥ R2
old

I Hence, when comparing models with the same dependent
variable Y , but with different number of independent
variables, R2 is not a good measure
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Goodness of Fit Measures

I Adjusted-R2, R̄2, is a goodness of fit measure that adjusts
for the different degrees of freedom, i.e., for adding more
variables in the model

I It is calculated as:

R̄2 = 1−
[(

1−R2
) n− 1

n− k − 1

]
= 1−

∑
i ε̂

2
i

n− k − 1∑
i y

2
i

n− 1

I What happens to the relationship between R̄2 and R2 as
sample size increases? What about if we have relatively
small sample size with big number of independent
variables?
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Goodness of Fit Measures: Example

Recall the University GPA example

Model R2 R̄2

Ŷ = α̂0 + α̂1X1 0.297241 0.290070

Ŷ = δ̂0 + δ̂2X2 0.273272 0.265857

Ŷ = β̂0 + β̂1X1 + β̂2X2 0.398497 0.386095
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Interpretation of Coefficients: A Review

Model βj
Ŷi = β̂0 + β̂1X1i + . . .+ β̂kXki For one unit increase in Xj ,

holding everything else
constant, Y , on average,

increases by β̂j units
ˆlnYi = β̂0 + β̂1 lnX1i + . . .+ β̂k lnXki For one percent (%) increase

in Xj , holding everything else
constant, Y , on average,

increases by β̂j percents (%)
ˆlnYi = β̂0 + β̂1X1i + . . .+ β̂kXki For one unit increase in

Xj , holding everything else
constant, Y , on average,

increases by (β̂j ∗ 100)%
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Interpretation of Coefficients: A Review

Model βj
Ŷi = β̂0 + β̂1 lnX1i + . . .+ β̂k lnXki For one percent (%) increase

in Xj , holding everything else
constant, Y , on average,

increases by
β̂j
100 units

Ŷi = β̂0 + β̂1
1
X1i

For one unit increase in Xj ,

Y , on average,

increases by −β̂1 1
X2

1
units
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Interpretation of Coefficients: A Review

Model βj
Ŷi = β̂0 + β̂1X1i + β̂2X

2
1i For one unit increase in Xj ,

Y , on average,

increases by β̂1 + 2β̂2X1 units

Ŷi = β̂0 + β̂1X1i + β̂2X2i For one unit increase in Xj ,

+β̂3X1iX2i holding everything else
constant, Y , on average,

increases by β̂1 + β̂3X2 units
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Inferences in the Linear Regression Models:
Hypothesis Tests

I Wooldridge: Chapters 4 and 5 (5.2) OR Goldberger:
Chapters 7, 10 (10.3), 11, and 12 (12.5 & 12.6).

I A hypothesis test is a statistical inference technique that
assesses whether the information provided by the data
(sample) supports or does not support a particular
conjecture or assumptions about the population.

I In general, there are two types of statistical hypotheses:

1. Nonparametric hypotheses are about the properties of
the population distribution (independent observations,
normality, symmetry, etc.).

2. Parametric hypotheses are about conditions or restrictions
of population parameter values.
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Inferences in the Linear Regression Models:
Hypothesis Tests

I Null hypothesis is a hypothesis to be tested, denoted by
H0

I Alternate hypothesis is a hypothesis to be considered as
an alternate to the null hypothesis, denoted by H1, or Ha

I Hypothesis test is to decide whether the null hypothesis
should be rejected in favor of the alternative hypothesis.

I The classical approach to hypothesis testing, based on
Neyman-Pearson, divides the sample space given H0 in two
regions:

Rejection (Critical) region and Do not reject (DNR) region
If the observed data fall into the rejection region, the null
hypothesis is rejected
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Inferences in the Linear Regression Models:
Hypothesis Tests

Steps to perform Hypothesis test is:

1. Define H0 and H1

2. Define a test statistic that measures the discrepancy
between the sample data and the null hypothesis H0. This
statistic:

is a fuction of H0 and the sample data, that is, the test
statistics is a random variable
must have a known distribution (exact or approximate)
under H0 (in case H0 is true)
If the discrepancy between the sample data and H0 is “big”,
the value of the test statistic will be within a range of
values unlikely under H0 ⇒ evidence against H0

If the discrepancy between the sample data and H0 is
“small”, the value of the test statistic will be within a range
of values unlikely under H0 ⇒ evidence for H0
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Inferences in the Linear Regression Models:
Hypothesis Tests

3. Determine the “major discrepancies”, ie, the critical
(rejection) region. This region is defined by a critical value,
given the distribution of the test statistic.

4. Given the sample data, calculate the value of the test
statistic and check if you are in the rejection region
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Inferences in the Linear Regression Models:
Hypothesis Tests

I Since the sample data used in the test is random, the test
statistic, which is a function of the sample data, is also a
random variable.

Therefore, the test statistic may lead to different
conclusions for different samples.
When the hypothesis test is carried out, we conclude either
in favor of H0 or H1, and we will be in one of four
situations:

H0 is True H0 is False

Do not reject (DNR) H0 Correct Decision Type II error

Reject (R) H0 Type I error Correct Decision
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Inferences in the Linear Regression Models:
Hypothesis Tests

I We define the significance level as
α = P (Type I error) = P (Reject H0|H0 is true)

I We would like to minimize both types of errors, but it is
not possible to minimize the probability of both types of
error for a given sample size.

The only way to reduce the probability of both errors is by
increasing the sample size
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Inferences in the Linear Regression Models:
Hypothesis Tests

I The classical procedure is as follows:

I Set α (significance level of the test), ie, establish the
maximum probability of rejecting H0 when it is true

we set a value as small as desired: usual values are 10%,
5%, or 1%

I Minimize
P (Type II error) = P (DNR Reject H0|H0 is false) or,
equivalently, maximize 1− P (Type II error) =Power of the
test

I Since power is defined under the alternative hypothesis, its
value depends on the true value of the parameter (which is
unknown).
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Inferences in the Linear Regression Models:
Hypothesis Tests

I A hypothesis test is consistent if
lim
n→∞

(1− P (type II error)) = 1

I Probabilities of Type I and Type II Errors:

Significance level α: The probability of making a Type I
error (rejecting a true null hypothesis)
Power of a hypothesis test: Power = 1-P(Type II error) =
1-β

I The Probability of rejecting a false null hypothesis
I Power near 0: the hypothesis test is not good at detecting

a false null hypothesis.
I Power near 1: the hypothesis is extremely good at

detecting a false null hypothesis
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Inferences in the Linear Regression Models:
Hypothesis Tests

I Relation between Type I and Type II error probabilities:
For a fixed sample size, the smaller we specify the
significance level, α, the larger will be the probability, β, of
not rejecting a false null hypothesis

I Since we don’t know β, we don’t know the probability of
not rejecting a false null hypothesis. Thus when we DNR
H0, we never say “the data support H0”. We always say
“the data do not provide sufficient evidence support Ha”

I If we reject H0 at significance level α, we say our results
are “statistically significant at level α”. Likewise, if we do
not reject H0 at significance level α, we say our results are
“not statistically significant at level α”.
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Inferences in the Linear Regression Models:
Hypothesis Tests

I For a given H0

1. A test statistic, C, is defined
2. A critical region is defined using the distribution of C under

H0, given a significance level α
3. The test statistic is calculated using sample data, Ĉ
4. If the value of test statistic Ĉ is within the critical region,

we reject H0 with a significance level α; otherwise, we do
not reject (DNR) H0

60



Inferences in the Linear Regression Models:
Hypothesis Tests

I Test statistic is the statistic used as a basis for deciding
whether the null hypothesis should be rejected

I Rejection region is the set of values for the test statistic
that leads to rejection of the null hypothesis

I Non-rejection region is the set of values for the test
statistic that leads to nonrejection of the null hypothesis

I Critical values are the values of the test statistic that
separate the rejection and nonrejection regions
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Inferences in the Linear Regression Models:
Hypothesis Tests

I Instead of considering critical value to decide whether to
reject the null hypothesis, we can consider p−value.

I Assuming H0 is true, the p−value indicates how likely it is
to observe the test statistic, i.e.,

p−value= P
(
Ĉ ∈ { critical region } | H0

)
I Can be interpreted as the probability of observing a value

at least as extreme as the test statistic.
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Inferences in the Linear Regression Models:
Hypothesis Tests

I Corresponding to an observed value of a test statistic, the
p-value is the lowest level of significance at which the null
hypothesis can be rejected.

I Decision criterion for p-value approach to hypothesis tests:

if p−value≤ α, reject H0

if p−value> α, do NOT reject H0
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Hypothesis Tests: An Example, Test for
Population Mean

I Given a random variable, Y , we can test whether its mean,
E[Y ] = µ is equal to some constant quantity µ0:
H0 : µ = µ0 against the alternative H1 : µ 6= µ0

I To test this hypothesis, we have data on Y from a sample
of size n, {Yi}ni=1, where Yi’s are independent. Then we can
estimate the sample mean as:

µ̂ = Ȳ =
1

n

n∑
i=1

Yi
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Hypothesis Tests: An Example, Test for
Population Mean

I The expected value and variance of Ȳ are:

E[Ȳ ] = E

[
1

n

n∑
i=1

Yi

]
=

1

n

n∑
i=1

E[Yi] = µ

V (Ȳ ) = V

(
1

n

n∑
i=1

Yi

)
=

1

n2

n∑
i=1

V (Yi) =
σ2

n
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Hypothesis Tests: An Example, Test for
Population Mean

I Suppose Y ∼ N(µ, σ2), and σ2 is known. Then:

Since Y is normally distributed, the so are the sample
observations of Y , Yi.
Since Ȳ is a linear combination of Yi’s, which are normally
distributed, Ȳ , is also normally distributed:

Ȳ ∼ N
(
µ,
σ2

n

)
Under H0, Ȳ ∼ N

(
µ0,

σ2

n

)
In this case, our test statistic is defined as: Ĉ =

Ȳ − µ0

σ2/n
)

Under H0, Ĉ ∼ N(0, 1)
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Hypothesis Tests: An Example, Test for
Population Mean

I The test aims to assess whether the discrepancy, measured
by the test statistic, is statistically “large” in absolute
value ( we are interested in the magnitude of the
discrepancy, not the direction)

I We apply the classic procedure by determining a level of
significance: α

I In this case, we have a two-tailed test, with respective

significant levels of
α

2
in each tail. The rejection region

corresponds to extreme differences, whether positive or
negative.
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Hypothesis Tests: An Example, Test for
Population Mean

I How to we determine rejection region?

I How do we find the p−value?

I What happens when σ2 is unknown?
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Hypothesis Tests in Regression Setting:
Sampling Distributions of OLS Estimators

I In the MLR (also in SLR), we are interested in hypothesis
tests on parameters β0, β1, . . . , βk

I To do this, we need:

A test statistic and its distribution

I We have the OLS estimators of the parameters and their
properties. However, to make inferences we must
characterize the sampling distribution of these estimators.
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Hypothesis Tests in Regression Setting:
Sampling Distributions of OLS Estimators

I To derive exact distribution of β̂j , we would need to
assume that Y , given all Xj ’s is normally distributed, i.e.,

Yi|X1i, . . . ,Xki ∼ N
(
β0 + β1X1i + . . .+ βkXki, σ

2
)

⇐⇒ εi|X1i, . . . , Xki ∼ N
(
0, σ2

)
I In this case it is possible to show that β̂j ’s follow normal

distribution ⇒ β̂j ∼ N
(
βj , V (β̂j)

)
I In general, this assumption is not verifiable, and it is

difficult to be met. In that case, the distribution of the
estimators β̂j will be unknown.
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Hypothesis Tests in Regression Setting:
Sampling Distributions of OLS Estimators

I Even if normality assumption is not met, we can base our
inferences on the asymptotic distribution

I So, we will use the asymptotic distribution of ĵ ’s

I It can be proven that β̂j ∼
asy
N
(
βj , V (β̂j)

)
. This implies that

β̂j − βj√
V (β̂j)

∼
asy
N (0, 1)
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Hypothesis Tests in Regression Setting:
Sampling Distributions of OLS Estimators

I Substituting V (β̂j) by a consistent estimator

V̂ (β̂j) =
σ̂2

nS2
j (1−R2

j )

β̂j − βj√
V̂ (β̂j)

∼
asy
N (0, 1)
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Hypothesis Test of the Value of a Parameter

I We are interested in tests on βj ’s: H0 : βj = β0j against the

alternative H1 : βj 6= β0j , where β0j is a constant number

I Since σ2 is unknown, we employ a t−test, with the
following test statistic:

t =
β̂j − β0j√
V̂ (β̂j)

=
β̂j − β0j
sβ̂j

I Under H0, this test statistic asymptotically follows N(0, 1)
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Hypothesis Test of the Value of a Parameter

I Almost all econometric programs and/or packages present
the estimated coefficients with the corresponding standard
errors, t−statistic and the p−value associated with the
t−statistic.

I In general, these programs calculate the p−value based on
the t−distribution with (n− k − 1) degrees of freedom.

I For relatively large values of n, the critical values for the
t− distribution, and the asymptotic distribution are very
similar.

For example, for a two-tailed test with significance level α,
with (n− k − 1) degrees of freedom, |t| > t1−α/2, is:

I For α = 0.05, the critical value is 1.98 for the
t−distribution and 1.96 for the N(0, 1)

I For α = 0.10, the critical values is 1.658 for the
t−distribution and 1.645 for the N(0, 1)
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Hypothesis Test of the Value of a Parameter

I Therefore, we can base our rejection decision on the
p−values shown in the output tables of econometric
programs when n is relatively large.

I Also, using the output on the parameters, we can construct
approximate confidence intervals.
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Hypothesis Tests in Regression Setting:
Example

I Demand for money for USA and economic activity
(Goldberger, p. 107). (data file: TIM1.GDT)

I Model Y = β0 + β1X1 + β2X2 + ε, where

Y = ln(100 ∗ V 4/V 3) =log of real quantity demanded of
money (M1)
X1 = ln(V 2) =log of real GDP
X + 2 = ln(V 6) =log of the interest rate for treasury bill
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Hypothesis Tests in Regression Setting:
Example

Coefficient Std. Error t-ratio p-value

const 2.32959 0.205437 11.3397 0.0000
X1 0.557290 0.0263835 21.1227 0.0000
X2 −0.203154 0.0210047 −9.6719 0.0000

Mean dependent var 6.628638 S.D. dependent var 0.172887
Sum squared resid 0.080411 S.E. of regression 0.047932
R2 0.927291 Adjusted R2 0.923137
F (2, 35) 223.1866 P-value(F ) 1.20e–20
Log-likelihood 63.08600 Akaike criterion −120.1720
Schwarz criterion −115.2592 Hannan–Quinn −118.4241
ρ̂ 0.627702 Durbin–Watson 0.727502
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Hypothesis Tests in Regression Setting:
Example

I Interpretation:

β̂1 is the estimator of the elasticity of money demand with
respect to the GDP, holding the interest rate constant. If
the GDP increases by 1%, holding the interest rate
constant, on average, the demand for money grows by 0.6%

β̂2 is the estimator of the elasticity of money demand with
respect to the interest rate, holding GDP constant. If the
interest rate increases by 1% holding the GDP constant, on
average, the demand for money grows by 0.2%
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Hypothesis Tests in Regression Setting:
Example

I We would like to test the following two hypotheses:
Money demand is inelastic to the interest rate
The elasticity of money demand with respect to the GDP is
1

I H0 : β2 = 0 (money demand w.r.t. interest rate is 0) versus

H1 : β2 6= 0. Then, under H0, t =
β̂2 − 0

sβ̂2
∼asyN (0, 1) and

|t| =
∣∣∣∣−0.2032

0.021

∣∣∣∣ = 9.676 > Z∗ = 1.96

Note that |t| ≈ 9.7⇒ p−value is almost 0 (for a Z = 3.09,
the p-value for a normal distribution is 0.001)
⇒ we reject H0 at a significance level of 1%?
A 95% confidence interval for β2 is:

β̂2 ± sβ̂2
∗ 1.96⇒ −0.2032± 0.021 ∗ 1.96⇒ [−0.244,−0.162]
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Hypothesis Tests in Regression Setting:
Example

I H0 : β1 = 1 (elasticity of money demand w.r.t. GDP is 1)

versus H1 : β1 6= 1. Then, under H0, t =
β̂1 − 1

sβ̂1
∼asyN (0, 1)

and |t| =
∣∣∣∣0.5573− 1

0.0264

∣∣∣∣ = 16.769 > Z∗ = 1.96

Note that |t| ≈ 16.8⇒ p−value is almost 0
⇒ we reject H0 at a significance level of 1%?
A 95% confidence interval for β1 is:

β̂1 ± sβ̂1
∗ 1.96⇒ 0.5573± 0.0264 ∗ 1.96⇒ [0.505, 0.609]
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Hypothesis Tests in Regression Setting: Linear
Hypothesis Tests

I Let’s Consider the null hypothesis of the following form:
H0 : λ0β0 + λ1β1 + . . .+ λkβk = µ0

I To test this hypothesis, we construct our test statistic as

t =
λ0β̂0 + λ1β̂1 + . . .+ λkβ̂k − µ0√
V̂
(
λ0β̂0 + λ1β̂1 + . . .+ λkβ̂k

)
=

λ0β̂0 + λ1β̂1 + . . .+ λkβ̂k − µ0

s(λ0β̂0+λ1β̂1+...+λkβ̂k)

I Using the asymptotic approximation we have that under

H0: t =
λ0β̂0 + λ1β̂1 + . . .+ λkβ̂k − µ0

s(λ0β̂0+λ1β̂1+...+λkβ̂k)
∼asyN (0, 1)
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Linear Hypothesis Test: An Example

I Example: Production technology is estimated as follows:

Ŷ = 2.37+ 0.632X1 + 0.452X2 n = 31
(0.257) (0.219)

sβ̂1,β̂2 Ĉ(β̂1, β̂2) = 0.055

Y =logarithm of output
X1 =logarithm of labor
X2 =logarithm of capital
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Linear Hypothesis Test: An Example

I Interpretation:

β̂1 is the estimator of the elasticity of output with respect
to labor, holding capital constant. If the labor increases by
1%, holding the capital constant, on average, the output
grows by 0.63%

β̂2 is the estimator of the elasticity of output with respect
to capital, holding labor constant. If the capital increases
by 1% holding the labor constant, on average, the output
grows by 0.45%
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Linear Hypothesis Test: An Example

I Consider H0 : β1 + β2 = 1 (Constant returns to scale)
versus H1 : β1 + β2 6= 1

I Under H0,

t =
β̂1 + β̂2 − 1

sβ̂1+β̂2
∼
asy
N (0, 1)

with

sβ̂1+β̂2 =

√
V̂ (β̂1 + β̂2) =

√
V̂ (β̂1) + V̂ (β̂2) + 2Ĉ(β̂1 + β̂2)

I |t| =

∣∣∣∣∣ 0.632 + 0.452− 1√
(0.257)2 + (0.219)2 + 2 ∗ 0.055

∣∣∣∣∣ = 0.177 < Z∗ =

1.96

I Therefore, do not reject the null hypothesis of constant
returns to scale.
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Tests with Multiple Linear Constraints

I How can you compare more than one hypothesis about the
parameters of the model?

I For example:

H0 : β1 + β2 + . . .+ βk = 0
Or,
H0 : β1 = 0

β2 = 1
Or,
H0 : β1 + β3 = 0

β2 = −1
β4 − 2β5 = 1
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Tests with Multiple Linear Constraints

I Previous concepts:

Unrestricted model is the model on which you want to
make a hypothesis testing (under H1).
Restricted model is the model that has imposed the linear
constraint(s) under H0

Example 1: H0 : β1 = β2 = 0 vs. H1 : β1 6= 0 and/or β2 = 0

Unrestricted model Restricted model
Y = β0 + β1X1 + β2X2 + ε Y = β0 + ε
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Tests with Multiple Linear Constraints

I Example 2: H0 : β2 + 2β1 = 1 vs. H1 : β2 + 2β1 6= 1

Unrestricted model Restricted model

Y = β0 + β1X1 + β2X2 + ε Y ∗ = β0 + +β1X
∗ + ε

Y ∗ = Y −X2

X∗ = X1 − 2X2
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Tests with Multiple Linear Constraints:
Definitions

Unrestricted model Restricted model

Coefficient of
R2
un R2

rDetermination

Sums of Squares
SSRun SSRrof the Residuals
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Tests with Multiple Linear Constraints

I Using the asymptotic distribution we have under H0 with q
linear constraints,

W 0 = n
SSRr − SSRun

SSRun
∼
asy
χ2
q

I Or equivalently, provided that the restricted and
unrestricted models have the same the dependent

W 0 = n
R2
un −R2

r

1−R2
un

∼
asy
χ2
q

I Note that we use n instead of (n− k − 1), for large
samples, these values are very close.
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Tests with Multiple Linear Constraints

I Most econometric programs perform automatically if the
null hypothesis is written

Typically, these programs provide the F statistic, which
assumes conditional normality of the observations
This statistic has the form:

F =
SSRr − SSRun

SSRun

n− k − 1

q
∼ Fq,n−k−1

and therefore relates to the asymptotic test statistic W0 as
W0 ≈ qF
For n big enough both test will provide the same
conclusions. But we perform the asymptotic test

I Note that it is easy to show that (SSRr − SSRun) ≥ 0 and(
R2
un −R2

r

)
≥ 0

I All tests seen previously are special cases of this test.
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Tests for Global Significance

I H0 : β1 + β2 + . . .+ βk = 0 versus H1 : βj 6= 0 at least for
some j ∈ {1, 2, . . . , k}

I Unrestricted Model: Y = β0 + β1X1 + . . .+ βkXk + ε, with
R2
un

I Restricted Model: Y = β0 + εwith R2
r = 0

I Using the asymptotic distribution under H0,

W 0 = n
R2
un

1−R2
un

∼
asy
χ2
k
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Tests for Global Significance

I In general, econometric packages provide the F statistic for
global significance:

F =
R2
un

1−R2
un

n− k − 1

k
∼ Fk,n−k−1

and therefore relates to the asymptotic test statistic W0 as
W0 ≈ kF
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Tests for Global Significance: Example

I Recall Model Demand example that uses data for U.S.
TIM1.GDT

I Model Y = β0 + β1X1 + β2X2 + ε, where

Y = ln(100 ∗ V 4/V 3) = log of real quantity demanded of
money (M1)
X1 = ln(V 2) = log of real GDP
X + 2 = ln(V 6) = log of the interest rate for the treasury
bill

93



Tests for Global Significance: Example

Coefficient Std. Error t-ratio p-value

const 2.32959 0.205437 11.3397 0.0000
X1 0.557290 0.0263835 21.1227 0.0000
X2 −0.203154 0.0210047 −9.6719 0.0000

Mean dependent var 6.628638 S.D. dependent var 0.172887
Sum squared resid 0.080411 S.E. of regression 0.047932
R2 0.927291 Adjusted R2 0.923137
F (2, 35) 223.1866 P-value(F ) 1.20e–20
Log-likelihood 63.08600 Akaike criterion −120.1720
Schwarz criterion −115.2592 Hannan–Quinn −118.4241
ρ̂ 0.627702 Durbin–Watson 0.727502
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Tests for Global Significance: Example

I We consider H0 : β1 + β2 = 0 versus H1 : βj 6= 0 at least for
some j ∈ {1, 2}

I The asymptotic test then is:

W 0 = 38 ∗ 0.9273

1− 0.9273
= 482.55 > χ2

2 = 5.99

I Gretl output gives the F statistic as: F (2, 35) = 223.1866,
which is quite close to W 0/2

I Clearly, we reject H0
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