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Endogeneity

I Given the following linear regression model:

Y = β0 + β1X1 + β2X2 + . . .+ βkXk + ε

If E [ε|X1, X2, . . . Xk] = 0 ∀Xj , then we say that we have
explanatory exogenous variables
If, for some reason such as omission of relevant variables,
measurement errors, simultaneity, etc., Xj is correlated
with ε, we say that Xj is an endogenous explanatory
variable.
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Endogeneity

I OLS estimators of the model parameters are invalid
(inconsistent, etc.) under the existence of endogenous
explanatory variables.

I In this topic, we will study how to obtain consistent
estimators of the model parameters in the presence of
endogenous explanatory variables using instrumental
variables and applying the two-stage least squares
estimation (2SLS).
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Endogeneity Example 1: Measurement Error in
the Explanatory Variables

I Recall Y = β0 + β1X
∗ + ε, where the classical assumptions

are satisfied, hence:
E [ε|X∗] = 0 ⇒ E [Y |X∗] = L(Y |X∗) = β0 + β1X

∗. Under
this case,

E[ε] = 0 and C(X∗, ε) = 0

β0 = E[Y ]− β1E[X∗] and β1 =
C(Y,X∗)

V (X∗)
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Endogeneity: Example 1

I However, X∗ has measurement error. We observe X such
that X = X∗ + v1, where v1 is the measurement error

I Substituting X∗ = X − v1, we get

Y = β0 + β1X + ε− β1v1︸ ︷︷ ︸
u

I Then, C(X,u) 6= 0 ⇒ X is endogenous.
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Endogeneity Example 2: Omission of
Explanatory Variables

I Recall the case of omitting a relevant variable

I Let Y = γ0 + γ1X1 + u, where u = ε+ β2X2 and β2 6= 0.
Then this model is misspecified by omitting a relevant
variable

I In general, C(X1, u) 6= 0 ⇒ X1 is endogenous.
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Endogeneity Examples

1. Ability is not observed in a wage equation such as:
log(wage) = β0 + β1educ + β2ability + ε.

Since the ability is not observable, we are left with the
following simple regression model:
log(wage) = β0 + β1educ + u, where the “ability” is
included in the error term u
If we estimate this model by OLS, we will obtain a biased
and inconsistent estimator of β1 if C(educ, ability) 6= 0.

2. Effect of smoking on wages (ignoring the level of education)

3. Effect of smoking on Cancer (ignoring the physical health
state)
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Endogeneity Example 3: Simultaneity

I It is quite common that the realizations of distict variables
are economically related.

I This causes the equation for the dependent variable to be a
part of a system of simultaneous equations:

Some of the variables on the right side of the equation of
interest appear as dependent variables in other equations,
and vice versa.
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Endogeneity Example 3a: Market Equilibrium
Model

I Consider the following system:

Y1 = α1Y2 + α2X1 + u1 (Demand)

Y2 = α3Y1 + α4X2 + α5X3 + u2 (Supply)

I The endogenous variables are Y1 =quantity, Y2 =price are
determined by

the exogenous variables, X1 =rent, X2 =salary, and
X3=interest rate
and by the disturbances: u1 =demand shock, and
u2 =supply shock

I The variables Y1 and Y2, both of which appeared on the
right hand side of the supply and demand equations, are
not orthogonal to their respective shocks:

E[Y1|Y2, X1] = α1Y2 + α2X1 + E[u1|Y2, X1]︸ ︷︷ ︸
6=0
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Endogeneity Example 3b: Production Function

I If a company is a profit maximizer, or a cost minimizer

The quantities of the inputs are simultaneously determined
with the level of output

The disturbance, that is, the realization of the technologic
shocks, is in general correlated with the quantity of the
inputs.
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Instrumental Variables

I Instrumental variables (IV) approach allows us to get
consistent estimators of the population parameters when
the OLS estimators are inconsistent (in situations such as
omitting a relevant variable, measurement errors, and
simultaneity)
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Instrumental Variables

I In general, we have to use the model: Y = β0 + β1X + ε,

where C(X, ε) 6= 0 ⇒ β0 and β1 are not the same as the
parameters of the linear projection, L(Y |X)

⇒ The OLS estimators (β̂0 and β̂1) of the linear projection
of Y on X are inconsistent estimators of β0 and β1:
(xi = Xi − X̄), (yi = Yi − Ȳ )
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Instrumental Variables
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Instrumental Variables: Definition

I In the model:
Y = β0 + β1X + ε (1)

, where C(X, ε) 6= 0, in order to get consistent estimators
of β0 and β1, we need additional information in the
form of additional variables.

I Suppose we have a new variable, Z, which is called the
instrumental variable, with the following properties:

1. It is uncorrelated with the error term: (a) C(Z, ε) = 0;
2. It is correlated with the endogenous variable X: (b)

C(Z,X) 6= 0.
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Instrumental Variables: IV Estimation in the
Simple Model

I Using Z as an instrument, we can obtain consistent
estimates β0 and β1.

I From (1) we get: C(Z, Y ) = β1C(Z,X) + C(Z, ε), which,
given (a), implies that:

β1 =
C(Z, Y )

C(Z,X)

β0 = E[Y ]− β1E[X] = E[Y ]− C(Z, Y )

C(Z,X)
E[X]
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Instrumental Variables: IV Estimation in the
Simple Model

I Assuming we have a random sample of size n of the
population, and by replacing population moments with the
sample values in the expression above, (principle of
analogy), we get the Instrumental Variable Estimator (IV):

β̃1 =
SY Z
SXZ

=

∑
i ziyi∑
i zixi

β̃0 = Ȳ − β̃1X̄

I yi = Yi − Ȳ , xi = Xi − X̄, and zi = Zi − Z̄
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Instrumental Variables: Properties of IV
Estimators in the Simple Model

I Provided that (a) and (b) hold, the IV estimator will be a
consistent estimator:

p lim
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Instrumental Variables: Properties of IV
Estimators in the Simple Model, (a)

I Any instrument or instrumental variable must meet the
two properties: (a) and (b). Regarding to this:

The condition (a): C(Z, ε) = 0, can not be confirmed. So
we must depend our choice of Z on economic behavior or
some theory ⇒ we must be very careful when choosing Z.
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Instrumental Variables: Properties of IV
Estimators in the Simple Model, (b)

I The condition (b): C(Z,X) = 0 can be tested using the
sample data.

The simplest way is to consider the linear projection of X
on Z: X = π0 + π1Z + v,
then, estimate this by OLS and perform the following test:
H0 : π1 = 0 vs H1 : π1 6= 0

I Note: If Z = X, we obtain the OLS estimation. That is,
when X is exogenous, can be used as its own instrument,
and the IV estimator is then identical to the OLS
estimator.
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Instrumental Variables: The Variance of the IV
Estimator

I In general, the IV estimator will have a larger variance
than the OLS estimator.

I To see this, let’s drive the estimated variance of the IV
estimator β̃1, S

2
β̃1

:

S2
β̃1
≡ V̂

(
β̃1

)
=
σ̃2S2

Z

nS2
ZX

=
σ̃2

nr2ZXS
2
X

where rZX =
SZX
SZSX

, is the sample correlation coefficient

between X and Z, which measures the degree of linear
relationship between X and Z in the sample.
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Instrumental Variables: The Variance of the IV
Estimator

I Recall the variance of the OLS estimator of β1, β̂1:

S2
β̂1

=
σ̂2

nS2
X

where σ̂2 =
1

n

∑
i ε̂

2
i

I If X is really exogenous, then, the OLS estimators are
consistent, and p lim

n→∞
σ̂2 = p lim

n→∞
σ̃2 = σ2 =

Since 0 < |rZX | < 1, this implies that S2
β̃1
> S2

β̂1
, and the

difference will be bigger, the lower the |rZX | is.
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Instrumental Variables: The Variance of the IV
Estimator

I Therefore, if X is exogenous, using IV estimator instead
of the OLS estimator is costly, in terms of efficiency.

I The lower the correlation between Z and X, the greater
the difference between the IV variance and the OLS
variance, in favor of the OLS variance.

In the case where both β̃1 and β̂1 are consistent, then
asymptotically the IV estimator variance and that of the
OLS estimator have the following relationship:

p lim
(
S2
β̃1
/S2

β̂1

)
= 1/ρ2ZX
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Instrumental Variables: The Variance of the IV
Estimator

I This implies, when n→∞

I If ρZX = 1% = 0.01, then V (β̃1) = 10000V (β̂1), and

therefore,
√
V (β̃1) = 100

√
V (β̂1)

I If ρZX = 10% = 0.1, then V (β̃1) = 100V (β̂1), and

therefore,
√
V (β̃1) = 10

√
V (β̂1)

I Even with a relatively high correlation, ρZX = 50% = 0.5,

then V (β̃1) = 4V (β̂1), and therefore,
√
V (β̃1) = 2

√
V (β̂1)

23



Instrumental Variables: The Variance of the IV
Estimator

I BUT if X is endogenous, the comparison between OLS
and the IV variances has no meaning because the OLS
estimator is inconsistent.
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Instrumental Variables: Inferences with the IV
Estimator

I Consider the simple model: Y = β0 + β1X + ε

I Assume the conditional homoscedasticity assumption
holds: V (ε|Z) = σ2 = V (ε)

I then, it can be shown that:

β̃1 − β1
Sβ̃1

∼
asy
N(0, 1)
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Instrumental Variables: Inferences with the IV
Estimator

I Sβ̃1 is the standard error of the IV estimators:

S2
β̃1
≡ V̂

(
β̃1

)
=
σ̃2S2

Z

nS2
ZX

⇒ Sβ̃1 =
σ̃√
nSZX

I where σ̃2 =
1

n

∑
i ε̃

2
i , and ε̃i = Yi −

(
β̃0 + β̃1X

)
= yi − β̃1xi

I This result allows us to construct confidence intervals, and
perform hypothesis tests.
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Instrumental Variables: Goodness of fit under
IV Estimation

I Most econometric programs calculate the R2 in the IV
estimation using the following formula:

R2 = 1−
∑

i ε̃
2
i∑

i y
2
i

I However, when X and ε are correlated, this formula is not
correct. The R2 of the IV estimation:

can be negative if
∑
i ε̃

2
i >

∑
i y

2
i .

has no natural interpretation, because if C(X, ε) 6= 0, we
cannot decompose the variance of Y as β2

1V (X) + V (ε).
cannot be used to calculate the W 0 test statistic (we have
to use SSR).
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IV versus OLS

I If our objective is to maximize the R2, then we should
always use the OLS.

I But if our goal is to properly estimate the causal effect of
X on Y , that is, β1, then:

If C(X, ε) = 0, we have to use the OLS. (It will be more
efficient than any IV estimator Z such that Z 6= X).
If C(X, ε) 6= 0, OLS will not be consistent, thus using an IV
estimator Z 6= X is appropriate. (The goodness of fit, in
this context, is not of interest to us).
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Instrumental Variables: Inadequate Instruments

I The IV estimator is consistent if (a) C(Z, ε) = 0 and (b)
C(Z,X) 6= 0.

I If these conditions are not satisfied, the IV estimator has
an asymptotic bias, that is bigger than that of the OLS
estimator, especially if |ρXZ | is small.

I We can see this by comparing the p lim of both estimators:
the IV estimator (considering the possibility that Z and ε
are correlated) and the OLS estimator (when X is
endogenous).

p lim β̃ = β1 +
C(Z, ε)

C(Z,X)

p lim β̂ = β1 +
C(X, ε)

C(X)
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Instrumental Variables: Inadequate Instruments

I Expressed in terms of correlations and population standard
deviations of Z, Y and ε, respectively, are:

p lim β̃ = β1 +
ρZε
ρZX

σε
σX

p lim β̂ = β1 + ρXε
σε
σX

I Therefore, we prefer the IV estimator to the OLS estimator

if
ρZε
ρZX

< ρXε
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Instrumental Variables: Inadequate Instruments

I When Z and X are not correlated at all, then the situation
is particularly bad, regardless of whether Z and ε are
correlated or not.

I When Z and X have a very small sample correlation rZX ,
the problem will be very similar:

It may seem like C(Z,X) = 0.
The estimates will be very inaccurate and may present
values that are implausible.
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Instrumental Variables: Example of Inadequate
Instruments

I Example: Effect of the Mother’s cigarette consumption on
the birth weight of the baby:

Following example illustrates why we should always check
whether the endogenous explanatory variable is correlated
with the potential instrument.
Our estimation results for the effect of several variables on
the birth weight, including cigarette consumption of the
mother are presented below:
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Instrumental Variables: Example of Inadequate
Instruments

Model 1: OLS, using observations 1–1388
Dependent variable: bwght

Coefficient Std. Error t-ratio p-value

PACKS −0.0837 0.0175 −4.80 0.000
MALE 0.0262 0.0100 2.62 0.009
PARITY 0.0147 0.0054 2.72 0.007
LFAMINC 0.0180 0.0053 3.40 0.001
const 4.6756 0.0205 228.53 0.000

R2 0.0350
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Instrumental Variables: Example of Inadequate
Instruments

Where

I LBWGHT = logarithm of the baby’s birth weight

I MALE = dummy variable that equals 1 if the baby is male
and 0 otherwise,

I PARITY = baby birth order (between siblings)

I LFAMINC = logarithm of family income in thousands of
dollars

I PACKS = average number of packs of cigarettes smoked
per day during pregnancy.
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Instrumental Variables: Example of Inadequate
Instruments

I PACKS may be correlated with other health habits and /
or with good prenatal care ⇒ PACKS and the error term
might be correlated.

I A possible instrumental variable for PACKS is the average
price of cigarettes per pack: CIGPRICE

Assume that CIGPRICE is uncorrelated with the error
term (although the availability of the state health care
might be correlated with taxes on cigarettes).
Economic theory suggests that C(PACKS, CIGPRICE) < 0.
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Instrumental Variables: Example of Inadequate
Instruments

The Linear projection of PACKS on CIGPRICE and other
exogenous variables:

Model 1: OLS, using observations 1–1388
Dependent variable: packs

Coefficient Std. Error t-ratio p-value

const 0.1374 0.1040 1.32 0.187
CIGPRICE 0.0008 0.0008 1.00 0.317
MALE −0.0047 0.0159 −0.30 0.766
PARITY 0.0182 0.0089 2.04 0.041
LFAMINC −0.0526 0.0087 −6.05 0.000

R2 0.030454

36



Instrumental Variables: Example of Inadequate
Instruments

I The reduced form results indicate that there is no
relationship between smoking during pregnancy and the
price of cigarettes (that is, the price elasticity of cigarette
consumption, which is an addictive good, is not
statistically different from zero).

I Since CIGPRICE and PACKS and are not correlated,
CIGPRICE does not satisfy the condition (b) ⇒
CIGPRICE should not be used as an IV.

I But what happens if we use CIGPRICE as an instrument?
The IV estimation results are:
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Instrumental Variables: Example of Inadequate
Instruments

Model 1: TSLS, using observations 1–1388
Dependent variable: LBWGHT
Instrumented: PACKS
Instruments: CIGPRICE

Coefficient Std. Error t-ratio p-value

const 4.4679 0.2563 17.43 0.000
PACKS 0.7991 1.1132 0.72 0.474
MALE 0.0298 0.0172 1.73 0.084
PARITY −0.0012 0.0254 −0.05 0.961
LFAMINC 0.0636 0.0571 1.12 0.265

R2 . F-statistic 2.50
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Instrumental Variables: Example of Inadequate
Instruments

I The coefficient of the variable PACKS is very large and it
has an opposite sign compared to what is expected. Its
standard error is also very large.

I But these estimates are meaningless since CIGPRICE does
not satisfy one of the requirements for a valid instrumental
variable.
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Generalization: The 2SLS Estimator for the
Simple Model

I Let the model be: Y = β0 + β1X + ε such that
C(X, ε) 6= 0,

I We have two possible IVs: Z1 and Z2 that meet:

C(Z1, ε) = 0, C(Z2, ε) = 0,

C(Z1, X) 6= 0, C(Z2, X) 6= 0.

I We can get two simple and distinct IV estimators: one
with Z1 and another one with Z2.

I BUT we can also obtain an IV estimator which uses the
linear combination of Z1 and Z2 as an instrument:

We get the estimators via two-stage least squares
estimation (2SLS)
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Generalization: The 2SLS Estimator for the
Simple Model

I Stage 1: We use OLS to estimate the linear projection of
the endogenous explanatory variable X on the instruments
Z1 and Z2 (known as the reduced form):

X = π0 + π1Z1 + π2Z2 + v (2)

Let π̂0, π̂1 and π̂2 be the OLS estimators of the reduced
form.
Then, the estimated values of X are: X̂ = π̂0 + π̂1Z1 + π̂2Z2

I Stage 2: We use OLS to estimate the regression of Y on X̂
(hence the name):

Y = β0 + β1X̂ + u (3)

This estimate is equal to estimating β0 and β1 by using the
IV Z = X̂.
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Generalization: The 2SLS Estimator for the
Simple Model

I Although in both cases the coefficients are the same, the
standard errors obtained by 2SLS are incorrect.

The reason is that the error term of the second stage, u,
includes v, but the standard error should only include the
variance of ε.

I The majority of the economic packages have special options
for IV estimation, which will conduct the 2SLS, so we don’t
need to perform the two stages sequentially.
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Generalization: The 2SLS Estimator for the
Simple Model

I The reduced form (2) decomposes the endogenous
explanatory variable into two additive parts:

The exogenous part, explained linearly by the instruments,
π0 + π1Z1 + π2Z2

The endogenous part, the part that could not be explained
by the instruments, that is, the error term v
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Generalization: The 2SLS Estimator,
Interpretation of the Reduced Form

I If the instruments are valid and V (ε|Z1, Z2) is
homoscedastic, it can be shown that the 2SLS estimators
are consistent and asymptomatically normal.

I Thus, we can make inferences using an estimator of the
population variance

σ̃2 =
1

n

∑
i

ũ2i

where ũ2i are the residuals from the 2SLS estimation.

I Similar to the simple IV estimator, when instruments are
not appropriate (because they’re correlated with the error
term or weak correlations with the endogenous variable)
the 2SLS estimators can be worse than OLS estimators.
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Generalization: The 2SLS Estimator for the
Multiple Model

I For simplicity, consider the following linear regression
model:

Y = β0 + β1X1 + β2X2 + ε

where E[ε] = 0, C(X1, ε) = 0, C(X2, ε) 6= 0

I That is:

X1 is an exogenous variable
But X2 is endogenous
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Generalization: The 2SLS Estimator for the
Multiple Model

I Suppose we have an instrumental variable Z such that
C(Z, ε) = 0.

I Then, the reduced form is X2 = π0 + π1X1 + π2Z + ε In
order Z to be a valid instrument, we need π2 6= 0, in other
words, C(Z,X2) 6= 0.

I Very important: Notice that the reduced form for the
endogenous explanatory variable includes the instruments
AND all the exogenous explanatory variables of the model.
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Generalization: The 2SLS Estimator for the
Multiple Model

I What if we have one more endogenous variable?

I Suppose Y = β0 + β1X1 + β2X2 + β3X3 + ε, where X1 and
X2 are endogenous, and X3 is exogenous.
E[ε] = 0, C(X1, ε) 6= 0, C(X2, ε) 6= 0, C(X3, ε) = 0

I In that case, we will need at least as many additional
exogenous variables as endogenous explanatory variables to
use as instruments.
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Generalization: The 2SLS Estimator for the
Multiple Model

I In this case, Let Z1 and Z2 be such that
C(Z1, ε) = C(Z2, ε) = 0.

I We will have a reduced form equation for each endogenous
explanatory variable, where use all the exogenous
explanatory variables and the instruments:

X1 = π10 + π11X3 + δ11Z1 + δ12Z2 + v1

X2 = π20 + π21X3 + δ21Z1 + δ22Z2 + v2

where, at least, δ11 6= 0 and δ22 6= 0 OR δ12 6= 0 and δ21 6= 0

I In general, all instruments are present in the equations for
the reduced form of each of the endogenous explanatory
variables.
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Test of Endogeneity: Hausman Test

I In practice, there are many situations where we do not
know whether an explanatory variable is endogenous. One
possibility is we can perform a hypothesis test for this.

I For example, for the following model Y = β0 + β1X + ε, we
can consider the following hypothesis:

H0 : C(X, ε) = 0 (exogenous)

H1 : C(X, ε) 6= 0 (endogenous)

I How can we perform such a test?

I Suppose we have a valid instrument Z such that
C(Z, ε) = 0 and C(Z,X) 6= 0
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Test of Endogeneity: Hausman Test

I Then, from the reduced form X = π0 + π1Z + v,we can
easily get

C(X, ε) = C(π0 + π1Z + v, ε) = C(v, ε)⇒

C(X, ε) = 0⇔ C(v, ε) = 0

I Therefore, if H0 : C(X, ε) = 0 is true, the coefficient α of
ε = αv + ξ should satisfy α = 0, or, equivalently, the
coefficient α of

Y = β0 + β1X + αv + ξ (4)
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Test of Endogeneity: Hausman Test

I Therefore, if you could estimate (4), we could test
H0 : α = 0, which is equivalent to H0 : C(X, ε) = 0.

I In practice, v is not observable. Therefore, it is replaced by
the OLS residuals v̂ from the reduced model.

I Therefore, the model

Y = β0 + β1X + αv̂ + ξ1 (5)

is estimated by OLS, where v̂ = X − (π̂0 + π̂1Z)

I The null hypothesis is that X is exogenous, ie H0 : α = 0.

I Therefore, if we reject that α is 0 in model (5), we conclude
that X is endogenous.
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Test of Endogeneity: Hausman Test

I Generalization:The Hausman test for r potential
endogenous variables would be:

Estimate r reduced forms corresponding to each of the r
variables,
Obtain the residuals from each of the reduced forms
Include all these r residuals as additional regressors to the
main model of Y
Test for joint significance of the residuals by W 0 test:

W 0 = n
SSRr − SSRun

SSRun
∼
asy

χ2
r

52



Test of Endogeneity: Hausman Test

I where

SSRr is the sum of the squares of the residuals of the
restricted model
SSRun is the sum of the squares of the residues of the full
model, which includes the residuals from each of the
reduced forms as additional regressors
r is the number of potential endogenous variables.

I If the conclusion is in favor of joint significance, then at
least one of the explanatory variables is endogenous.
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Hausman Test Example

I To illustrate, suppose we have the following model:
Y = β0 + β1X1 + β2X2 + β3X3 + ε,
where X1 and X2 are potentially endogenous, and X3 is
exogenous.

I We will need at least two instruments Z1 and Z2 such that
C(Z1, ε) = C(Z2, ε) = 0.

I Then, we have the following two reduced form equations:

X1 = π10 + π11X3 + δ11Z1 + δ12Z2 + v1

X2 = π20 + π21X3 + δ21Z1 + δ22Z2 + v2

54



Hausman Test Example

I The hypothesis of exogeneity is now
H0 : C(X1, ε) = C(X2, ε) = 0

I Equivalently, we can use the extended regression with the
residuals:
Y = β0 + β1X1 + β2X2 + β3X3 + α1v̂1 + α2v̂2 + ξ, where v̂1
and v̂2 are the residuals from the reduced forms for X1 and
X2, respectively

I The null hypothesis can be written as H0 : α1 = α2 = 0.

I To test this hypothesis with two restrictions, we should
estimate both the restricted and unrestricted models, and
calculate the sums of squares of residuals, and calculate the
test statistic W 0, which is distributed, approximately, χ2

2
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Testing Overidentification Restrictions: Sargan
Test

I If we have only one instrumental variable for each
endogenous explanatory variable, we say that the model is
“exactly identified”.

In this case, we can not test the condition (a) (C(Z, ε) = 0).

I BUT if we have more instrumental variables than the
potentially endogenous explanatory variables, we say that
the model is “overidentified”.

In this case, we can test whether any of the IVs is
correlated with the error term.

I Suppose we have r potentially endogenous explanatory
variables and q instruments, where q > r

(q − r), then, is the number of overidentification restrictions
(number of “extra” instruments).
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Testing Overidentification Restrictions: Sargan
Test

I We do not observe the errors of the equation of interest, u

I But we can implement a test based on residuals of the
2SLS, ũ (sample realizations of u).

I The test procedure:

1. Estimate the equation of interest using 2SLS and obtain the
2SLS residuals, ũ.

2. Regress ũ on all “exogenous” variables (including IVs).
Obtain the R2 of this regression, say R2

ũ

3. Under the null hypothesis that none of the IVs is correlated
with ũ, we have nR2

ũ ∼asyχ2
q−r
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Testing Overidentification Restrictions: Sargan
Test

I Intuition of the test: the fitted values of this auxiliary
regression, ˆ̃u, have zero mean and variance σ2ũ. Under
conditional homoscedasticity, asymptotically∑

i

ˆ̃u
2

σ2ũ
is the sum of squares of N(0, 1) random variables,

out of which only q − r are independent. Hence, this
expression follows an asymptotic χ2 distribution with q − r
degrees of freedom

I In practice, we will replace σ2ũ by its estimator

s2ũ =
1

n

∑
i
ˆ̃u2

I Therefore, this statistic also has the same distribution∑
i

ˆ̃u2

1

n

∑
i
ˆ̃u2

= nR2
ũ
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Testing Overidentification Restrictions: Sargan
Test

I If nR2
ũ exceeds the critical value of χ2

q−r at the significance
level, we reject H0 and conclude that there is no evidence
for exogeneity.

I Another thing is that this test does not distinguish which
variable is the reason for rejecting the null of no correlation.

I This test is also known as Hansen-Sargan test.
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Example: The Wage Equation

I Let the model be: ln(wage) = β0 + β1 educ + β2 cap + ε
where β2 6= 0 (ie, the variable capacity, which is
unobserved, is a relevant variable).

I If we estimate the model using OLS:
ln(wage) = β0 + β1educ + u, with u = β2cap + ε, we will
have inconsistent estimates.

I If we have an instrumental variable for educ, we can
estimate the model by IV estimation.
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Example: The Wage Equation

I What are the conditions for the IV in order our estimators
to be consistent?

1. C(Z, u) = 0: IV should not be correlated with the capacity
or other unobserved variables that affect wages.

2. C(Z, educ) 6= 0: IV should be correlated with education.

I Some examples of possible instruments (Z) for education
are, mother’s education, father’s education, number of
siblings, distance between school and home, etc.
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Example: The Wage Equation, OLS estimation

I We have a sample of 336 married women.

I The OLS estimation results are as follows:
̂ln(wage) = 0.286

(0.120)
+ 0.083

(0.009)
educ

I The interpretation is that an additional year of schooling,
on average, increases the wages by 8.3%.
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Example: The Wage Equation, IV estimation (a
single instrument)

I Possible instrument: Father’s education ⇒ educf

I Reduced form:
êduc = 9.799

(0.198)
+ 0.282

(0.021)
educf, R2 = 0.196

I t test statistic for the instrumental variable is

t =
0.282

0.021
≈ 13.52, that is, we reject H0 : π1 = 0

I Therefore, the education of women (educ), is significantly
correlated with the education of their father (educf).
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Example: The Wage Equation, IV estimation (a
single instrument)

I The IV Estimate: ̂ln(wage) = 0.363
(0.289)

+ 0.076
(0.023)

educ

I By comparing the results of OLS with that of IV, we see
that the OLS estimate is higher, which is consistent with a
positive bias due to omitting capacity.

I Notice that the standard error of the IV estimators are
substantially higher than those of the OLS estimators as
the theory suggests (but education still remains significant)
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Example: The Wage Equation, IV estimation (a
single instrument)

I Hausman Test

I From the reduced form, we get the variable v̂, the residual
of the estimated equation:
v̂ = educ− (9.799 + 0.282 educf), and perform the
regression:
ln(wage) = β0 + β1 educ + αv̂ + e, and obtain:
̂ln(wage) = β̂0 + β̂1 educ + 0.007

(0.024)
v̂

I Then we test H0 : α = 0 (educ is exogenous), with
t = 0.007/0.024 ≈ 0.3 ⇒ DNR H0 (DNR exogeneity)
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Example: The Wage Equation, IV estimation
(multiple instruments)

I Suppose that in addition to the father’s education, we also
have the mother’s education, educm, as an instrument.

I Now, the reduced form is:
êduc = 8.976

(0.226)
+ 0.183

(0.025)
educf + 0.183

(0.026)
educm, R2 = 0.245

I Test statistic for the joint significance of educf and educm
is W 0 ≈ 243.3, and has asymptotic χ2

2 distribution

I The IV Estimate using two IVs is:
̂ln(wage) = 0.396

(0.272)
+ 0.074

(0.023)
educ
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Example: The Wage Equation, IV estimation
(multiple instruments)

I In order to implement the Hausman test, we take the
residuals v̂ from the reduced form:
v̂ = educ− (8.976 + 0.183 educf + 0.183 educm)

I And use OLS to estimate the regression
model:ln(wage) = β0 + β1 educ + αv̂ + e, and obtain:
̂ln(wage) = β̂0 + β̂1 educ + 0.0107

0.022
v̂

I hen we test H0 : α = 0 (educ is exogenous), with
t = 0.0107/0.022 ≈ 0.5 ⇒ DNR H0 (DNR exogeneity)
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Example: The Wage Equation, IV estimation
(multiple instruments)

I Sargan Test

I Following the latter case, we have two instruments (educf
and educm) for a potentially endogenous variable (educ),
with q − r = 1 overidentification restrictions.

I We can, therefore, partially assess the validity of
instruments (that is, the null hypothesis of exogeneity) by
testing that the IVs have no correlation with the error term
using a Sargan test.
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Example: The Wage Equation, IV estimation
(multiple instruments)

I To do this, we, first, calculate the residuals of the 2SLS
estimation
ũ = ln(wage)− (0.396 + 0.074 educ)

I Then, perform the auxiliary regression of the residuals on
the exogenous variables and the instruments:
ˆ̃u = 0.0054

(0.0703)
+ 0.0020

(0.0075)
educf− 0.0025

(0.0081)
educm, R2 = 0.0003
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Example: The Wage Equation, IV estimation
(multiple instruments)

I Therefore, the test statistic, nR2
ũ = 0.1008, has a value less

than the critical value from the χ2
1 distribution. Therefore

we do not reject the null of no correlation between the
instruments and the error term of the model.

I That is, there is no evidence against the validity of the
instruments.
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Final Points

I In practice, in many situations, it is difficult to find valid
instruments, that is, a variable which is not included in the
model, and is highly correlated with potentially
endogenous explanatory variables, and is not correlated
with the error term of the model.

I The problem is that for the economic variables, most of the
available variables are results of agents’ decisions, and
therefore, their exogeneity is questionable.
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Final Points

I Ideally, we would like to use, as instrumental variables,
variables that are given to the agent (i.e., exogenous). We
have seen an example the price of cigarettes as instrument
for the number of packets of cigarettes consumed.

I The problem is that in many contexts (like the example we
mentioned above) the quality of the instrument is reduced
by the weak correlation between the IV and the
endogenous explanatory variable we use the IV for.

72



Final Points

I EXAMPLE: The availability of information about previous
realizations of the variables of interest opens interesting
possibilities for possible instruments. Thus, an endogenous
explanatory variable could be replaced by the previous
realizations of the same variable (since the previous
realizations are given before the current values are realized)

For example, for the consumption and permanent income
equation, we use income since the forme is not available.
But, we could also use the disposable income corresponding
to the previous period as IV.
If we analyze this relationship with aggregated time series,
we could use the lagged disposable income as an instrument.
If we analyze the relationship with longitudinal family data,
lagged disposable income of each family could be used as an
instrument.
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