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1 Introduction

• The term autocorrelation (or serial correlation) denotes those situations where

realizations (observations) of the dependent variable are not independently drawn.

• This situation is very usual in the case of time series data.

• On the contrary, this situation does not happen in the case of cross-section data, for

which indvidual units are independent each other.
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Example (Cross section data):

• Cross section data about 200 Spanish households composed by couples with or

without children, randomly drawn from the Spanish Consumer Expenditure Survey

(EPF), 1990-91.

• Simple regression of the logarithm of per capita consumption on the logarithm of per

capita disposable income.

• Left figure: logarithm of per capita consumption vs. logarithm of per capita income,

and the corresponding OLS regression line.

• Right figure: residuals of the OLS linear regression vs. the order number of each

observation (such order is arbitrary in the case of cross section data).

– As residuals are the sample analogs of the population regression,

if errors were independent each other we should not find any pattern.
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• In the case of time series data (for which order of occurrence matters), autocorrelation

is a frequent phenomenon, among other things, because of the time dependence

associated with the inertia in economic data.

• It is quite plausible that shocks o disturbances affecting economic variables may

show time dependence. Examples:

– Consider the relationship between employment and inflation between 1950 and

1990.

All unobserved factors which potentially can affect employment but are not

included in such relationship are contained in the error term.

Some of these unobserved factors can exhibit time dependence: particularly,

energy shocks in the 1970s’.

Such energy shocks can induce higher employment drop that that predicted by

the model (i.e., a large positive error).

As the effects of an energy shock are not damped fastly, we would expect errors

in the next following years to be positive too.

The magnitude of such errors due to the energy shock will decrease over time

and, eventually, we will have errors closer to zero (even, negative) after some

years.

– Consider the relationship between stock index and growth.

Among the unobserved factors that can affect the stock index, we should men-

tion the level of confidence of economic agents (which, in turn, is affected by

unexpected news or surprises).

Such unexpected news can lead the stock index below the value predicted by

the model if agents’ confidence is worsened.

Presumably, the level of confidence of agents will exhibit inertia.
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Example (Time series data):

• Annual data for the Spanish economy between 1964 and 1997 of aggregate consump-

tion and GDP at market prices, in constant million euros of 1986.

• Simple regression of the logarithm of consumption on the logarithm of GDP.

• Left figure: logarithm of consumption vs. logarithm of GDP

and the corresponding OLS regression line.

• Right figure: residuals of the OLS linear regression vs. the order number of each

observation (i.e., the year, which establishes a non-arbitrary order).

– As residuals are the sample analogs of the population regression of the relation

between the log of consumption and the log of GDP,

if errors were independent each other, we should not find any pattern along time.

– However, we find periods when residuals are predominantly negative followed

by other periods when residuals are predominantly positive.
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• When observations are correlated each other, the OLS estimator can no longer be

optimal, and it might be that the standard expression of its standard error can be

inappropriate..

• For the sake of simplicity, we will consider the simple regression model, where we are

conditioning on a single variable.

• To index observations, we will use t, s or t − j as subindices –instead of i, h– to

emphasize that we are considering time series.
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2 El regression model with time series

• Consider a time series of (Yt, Xt) (t = 1, . . . , T ),

i.e.: we observe T consecutive observations of Yt and Xt.

• Suppose that all the classical regression assumptions, except that about independence

among observations, are held.

• For a time series with T observations, we can write the model as

Yt = β0 + β1Xt + εt (t = 1, . . . , T )

• Assunptions of the regression model with dependent observations:

1. Linearity in parameters (Yt = β0 + β1Xt + εt)

2.

(i) E (εt|X1, . . . , XT ) = E (εt|Xt) ∀t

This assumption was always satisfied with independent observations (cross

section data).

But with time series data, this assumption is very restrictive,

as it establishes that the conditional mean of the disturbance is only af-

fected by the contemporaneous value of X.

(ii) E (εt|Xt) = 0 ∀t

Then, assumptions 2.(i) and 2.(ii) together imply that

E (εt|X1, . . . , XT ) = E (εt|Xt) = 0 ∀t

Particularly, note that we are requiring the disturbance to be uncorrelated with

past, present and future realizations of X.

This implies that we are discarding the possibility that disturbances can affect

future values of X.

This implication, which entails strict exogeneity of X, is very restrictive.
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It implies that, even though shocks or disturbances affect, by definition, Y ,

never affect X. (what seems unlikely)

Implications:

∗ E (εt) = 0 ∀t (by the law of iterated expectations).

∗ C (Xt, εt) = 0 ∀t

∗ From assumptions 1. and 2.,

E (Yt|X1, . . . , XT ) = E (Yt|Xt) = β0 + β1Xt

i.e., the CEF is linear.

3.

(i) V (εt|X1, . . . , XT ) = V (εt|Xt) = σ2 ∀t

(Conditional homoskedasticity)

(ii) C (εt, εt−j|X1, . . . , XT ) = C (εt, εt−j|Xt, Xt−j) = σt,t−j ∀t, j (j 6= 0)

(Conditional autocorrelation or conditional serial correlation)

This assumption implies that the covariance between any two disturbances

occurred in different periods (conditional to the realizations of X in those

same periods) can differ from zero.

(iii) σt,t−j = γj ∀t, j (j 6= 0)

This assumption implies that the covariance between any two disturbances

occurred in different periods (conditional to the realizations of X in those

same periods) depends only on the time length j between both periods, but

not on the particular period t.

In other words: the conditional covariance between disturbances occurred

in 1980 and 1985 is the same as the conditional covariance between distur-

bances occurred in 1990 and 1995.

This assumption relies on the stationarity (in covariance) condition,

which establishes that all first- and second- order conditional moments

(means, variances and covariances) do not depend on the period of ref-

erence.

Actually, stationarity condition is already implicit in assumption 2. an in
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assumption 3.(i).

Intuitively, stationarity entails that the relationship between variables is

relatively stable along time. Otherwise, the parameters characterizing such

relationship would vary along time, precluding us to infer how changes in a

variable affect the mean value of another variable.

Thus, assumptions 3.(i), 3.(ii) and 3.(iii) together establish that

V (εt|X1, . . . , XT ) = V (εt|Xt) = σ2 ∀t

C (εt, εt−j|X1, . . . , XT ) = C (εt, εt−j|Xt, Xt−j) = γj ∀t, j (j 6= 0)

Implications (by the law of iterated expectations):

V (εt) = σ2 ∀t

C (εt, εt−j) = γj ∀t, j (j 6= 0)
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3 Consequences on OLS estimation

• What are the implications of autocorrelation on the properties of the OLS linear

regression of Y on X, i.e., Ŷ = β̂0 + β̂1X̂?

• Recall that, for a given sample, the OLS slope can be expressed as

β̂1 =
∑
t

ctYt

where, defining the explanatory variable in deviations with respect to its mean, xs =

Xs −X,

ct = xt/
∑
s

x2s

• Besides, we know that

∑
t

ct = 0,
∑
t

ctXt = 1,
∑
t

c2t = 1/
∑
s

x2s

Thus, β̂ has conditional mean:

E
(
β̂1

∣∣∣X1, . . . , XT

)
=
∑
t

ctE (Yt|Xt) =
∑
t

ct (β0 + β1Xt)

= β0
∑
t

ct + β1
∑
t

ctXt = β1

Consequently, with the earlier assumptions, the OLS estimator remains unbiased.

• Moreover, it can be easily checked that

p lim β̂1 = β1,

so that the OLS estimator β̂1 is a consistent estimator of β1. To see this, notice

that

β̂1 =

1
T

T∑
t=1

xtYt

1
T

T∑
s=1

x2s

=
SXY
S2
X

.

β1 =
C(Xt, Yt)

V (Xt)

As SXY , S2
X are consistent estimators of C(Xt, Yt), V (Xt), respectively, the ratio

between SXY and S2
X estimates consistently β1.
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• Nevertheless, the variance of the estimator is now

V
(
β̂1

∣∣∣X1, . . . , XT

)
=
∑
j

∑
t

ctct−jσt,t−j = σ2
∑
t

c2t + 2
∑
j

∑
t>j

ctct−jσt,t−j

and, therefore, since ctct−j = xtxt−j

/(∑
s

x2s

)2

= xtxt−j

/
(TS2

X)
2
,

V
(
β̂1

)
= σ2E

(
1

TS2
X

)
+ 2E

[
1

(TS2
X)

2

∑
j

∑
t>j

xtxt−jσt,t−j

]

= σ2E

(
1

TS2
X

)
+ 2E

[
1

(TS2
X)

2

∑
j

∑
t>j

xtxt−jγj

]

= σ2E

(
1

TS2
X

)
+ 2E

[
1

(TS2
X)

2

∑
j

γj
∑
t>j

xtxt−j

]

Example It is interesting to check the how the variance is obtained, explicitly, in a simple

case. For T = 3, we have β̂1 = c1Y1+ c2Y2 + c3Y3, so that

V
(
β̂1

∣∣∣X1, X2, X3

)
= c21σ11 + c1c2σ12 + c1c3σ13

+ c2c1σ21 + c22σ22 + c2c3σ23

+ c3c1σ31 + c3c2σ32 + c23σ33

Since σ11 = σ22 = σ33 = σ2 and σ12 = σ21 = γ1, etc., the expression becomes

V
(
β̂1

∣∣∣X1, X2, X3

)
= σ2

(
c21 + c22 + c23

)
+ 2 (c1c2σ12 + c1c3σ13 + c2c3σ23)

=
σ2

TS2
X

+ 2 (c1c2σ12 + c1c3σ13 + c2c3σ23)

=
σ2

TS2
X

+ 2 [(c1c2 + c2c3) γ1 + c1c3γ2] .

• The fact that, in general, γj 6= 0 (j 6= 0) makes that V
(
β̂1

∣∣∣X1, . . . , XT

)
6= σ2/ (TS2

X),

so the variance differs from the standard expression.

• The computer package ignores that the model has changed, so it wll continue calcu-

lating the values

s2 =
∑T

t=1e
2
t

/
(T − 2)

s2
β̂1

= s2
/ (
TS2

X

)
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• Clearly, the standard estimator of the variance does not provide a proper estimate

of σ2
β̂1

, and the usual calculation of the standard error is inappropriate.

Consequently, the usual confidence intervals and hypotheses test statistics are also

wrong.

• Efficiency

OLS, in this context, is not the Best Linear Unbiased Estimator.

(Because it ignores the autocorrelation structure between errors).
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4 Inference robust to autocorrelation: Newey-West

variance estimator

• The rationale to obtain estimators of the variance of the OLS estimator that are ro-

bust to autocorrelation is similar to the one proposed by Eicker-White for conditional

heteroskedasticity.

• In this respect, the natural way to estimate the additional term

∑
j

∑
t>j

xtxt−jγj =
∑
j

γj
∑
t>j

xtxt−j

would be, denoting the model residuals as ε̂t = Yt − Ŷt = Yt −
(
β̂0 + β̂1Xt

)
, (t =

1, . . . , T ):
J∑
j=1

1

T − j
∑
t (t>j)

xtxt−j ε̂tε̂t−j.

and, using the assumption C (εt, εt−j) = γj ∀t, j (j 6= 0), can be simplified to

J∑
j=1

1

T − j

( ∑
t (t>j)

ε̂tε̂t−j

)( ∑
t (t>j)

xtxt−j

)
.

• There appears the problem that, in principle, the sum across j should account from

1 to ∞ in order to capture all the possible non-zero covariances, but in practice, it

is limited by the sample size T .

In fact, the choice of J is arbitrary, a usual criterion being

J = int
[
(T )1/4

]
where int(w) is the function that yields the integer of w.

In practice, the choice is subject to the data frequency and the number of available

observations.

– Annual data: J between 1 and 3.

– Quarterly data: J between 4 and 12.

– Monthly data: J between 12 and36.
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• The major problem of the resulting estimator

Ṽ
(
β̂1

)
=

s2

TS2
X

+
2

(TS2
X)

2

J∑
j=1

1

T − j

( ∑
t (t>j)

ε̂tε̂t−j

)( ∑
t (t>j)

xtxt−j

)

is that, for a given sample, it is not ensured that the estimation of Ṽ
(
β̂1

)
is positive.

• Newey and West (1987) proposed a consistent estimator that circumvents this prob-

lem.

To proceed, we must fix J to an integer number of periods after which the time

dependence between errors is zero or negligible. The proposed estimator would be

s2
β̂1

=
s2

TS2
X

+
2

(TS2
X)

2

J∑
j=1

(
j

J + 1

)
1

T − j

( ∑
t (t>j)

ε̂tε̂t−j

)( ∑
t (t>j)

xtxt−j

)

Examples:

– J = 1

s2
β̂1

=
s2

TS2
X

+
2

(TS2
X)

2

[
1

2

(
1

T − 1

T∑
t=2

ε̂tε̂t−1

)(
T∑
t=2

xtxt−1

)]
.

– J = 2

s2
β̂1

=
s2

TS2
X

+
2

(TS2
X)

2

[
1

2

(
1

T − 1

T∑
t=2

ε̂tε̂t−1

)(
T∑
t=2

xtxt−1

)
+

2

3

(
1

T − 2

T∑
t=3

ε̂tε̂t−2

)(
T∑
t=3

xtxt−2

)]
• Newey and West proved this estimator to be consistent for arbitrary choices of J

as long a J increases with sample size T (intuitively, the longer the available data

history, the more flexible we can be about the autocorrelation pattern).

• in practice, most econometric packages include the option of autocorrelation-robust

standard errors with OLS and IV/2SLS estimation.

Some of these programs, like E-Views, take a default value of J (i.e., the maximum

number of periods to calculate non-zero covariances).

• Besides, with time series data heteroskedasticity and autocorrelation can ap-

pear together. There exist a variacne estimator that is robust to both situations.

In this respect, most econometric packages include this option.
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5 Autocorrelation tests

• Suppose you suspect about the presence of autocorrelation, and want to assess such

possibility given your sample data.

• In addition, suppose that if there is autocorrelation, it is first-order autocorrelation,

i.e., E (εtεt−1) 6= 0. This would imply that, if we observed the time series of εt

(t = 1, . . . , T ), and run the regression

εt = θ1εt−1 + vt,

the null hypothesis of no autocorrelation H0 : E (εtεt−1) = 0 would be equivalente to

H0 : θ1 = 0.

(Since E (εt) = 0 for any t, in principle the linear projection of εt on εt−1 does not

require constant).

• However, we do not observe the errors εt. Instead, we observe the model residuals,

ε̂t = Yt − Ŷt = Yt −
(
β̂0 + β̂1Xt

)
, which are the sample analogs of εt.

• Running the OLS linear regression of ε̂t on ε̂t−1 without constant, the econometric

package will yield a slope estimate

ρ̂ =

∑T
t=2 ε̂t−1ε̂t∑T
t=2 ε̂

2
t−1

and a estandard error of the estimated slope sρ̂.

To test H0 : θ = 0, it can be proved that tθ = ρ̂/sρ̂ has an approximate distribution

N (0, 1) under the null.

A large magnitude of tθ in absolute value will provide evidence against the null, θ = 0

and in favor of the existence of first-order autocorrelation.
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• The most popular first-order autocorrelation test (reported by most econometric

packages) is the Durbin-Watson test d.

This test is relarted with the first-order autocorrelation statistic that we have shown

in the form,

d ' 2(1− ρ̂).

However, the Durbin-Watson test has the inconvenient that its critical values depend

on the sample size.

Besides, its interpretation is counterintuitive, as small values of the Durbin-Watson

statistic point out high and positive autocorrelation, and vice versa.

• In practice, we can test for the existence of higher order autocorrelation. For example,

if we wanted to test for autocorrelation up to order q, we can run the regression

ε̂t = θ0 + θ1ε̂t−1 + θ2ε̂t−2 + · · ·+ θqε̂t−q + vt,

where ε̂t = Yt − Ŷt = Yt −
(
β̂0 + β̂1Xt

)
are the OLS residuals, and test the null

H0 : θ1 = θ2 = · · · = θq = 0.

Intuitively, this test is, in practice, a regression test.
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