Exercise sheet 6

Models with endogenous explanatory variables

Note: Some of the exercises include estimations and references to the data files. Use these to compare them to the results you obtained with Gretl.

1. Recall that in the simple lineal model

$$Y = \beta_0 + \beta_1 X + \varepsilon,$$

when X is endogenous but we have an instrument Z that can be correlated with ε , we have that

$$p \lim \widetilde{\beta}_1 = \beta_1 + \frac{C(Z, \varepsilon)}{C(Z, X)}$$
 (estimator simple VI)

$$p \lim \widehat{\beta}_1 = \beta_1 + \frac{C(X,\varepsilon)}{V(X)}$$
 (estimator OLS)

Assume that $\sigma_X = \sigma_{\varepsilon}$, so that the population variation in the error term is the same as that of X. Suppose that the instrumental variable Z, is slightly correlated with ε , $\rho(Z, \varepsilon) = 0,1$. Suppose also that Z and X have a somewhat stronger correlation, $\rho(X, Z) = 0,2$.

- a) What is the asymptotic bias in the IV estimator that uses Z as an instrument?
- b) How much correlation would have to exist between X and ε so that the OLS estimator is more asymptotically biased than the previous IV estimator?
- 2. [Problem 16.10 in Wooldridge Textbook] Use the data in MROZ.gdt and consider the example of women labor supply.

Let *hours* be the total annual hours worked by a woman, *wage* is the wage rate per hour, *educ* years of education, *age* is age in years, *kidslt6* is the number of kids a woman has under the age of 6, *nwifeinc*, is the household income (excluding womens' wage income), *exper* is years of work experience, *motheduc* and *fatheduc* the years of education of her mother and father respectively.

a) Estimate the labor supply equation

 $\ln(hours) = \alpha_1 \ln(wage) + \beta_{10} + \beta_{11}educ + \beta_{12}age + \beta_{13}kidslt6 + \beta_{14}nwifeinc + u_1$

by 2SLS using *exper* and $exper^2$ as instruments for log (*wage*), and compare the result with that obtained with *hours* as the dependant variable.

b) In the labor supply equation in part (a), it is possible that *educ* is endogenous, given that ability is omitted. Use *motheduc* and *fatheduc* as instruments for *educ*. Now there are 2 endogenous explanatory variables in this equation.

- c) Test the overidentifying restrictions in the 2SLS estimation from part (b). What can you conclude about the validity of the instruments?
- 3. We would like to study the returns of education (ED) to wages (W). We are interested in knowing on the effect of years of education on wages. We have a sample of 3010 US young men in 1976 from the *National Longitudinal Survey of Young Men* (NLSYM) of the National Longitudinal Surveys in the USA for the year 1976. For each individual, we observe ED (Years of education), EX (Experience, in years), EX^2 (Experience squared), WHITE(Binary variable that takes the value of 1 if the young men is white and 0 otherwise). The following model is considered to analyze the return to education:

$$\ln W = \beta_0 + \beta_1 ED + \beta_2 EX + \beta_3 EX^2 + \varepsilon_1 \tag{1}$$

Notice that the error term ε_1 may include unobserved factors not included in the model that can affect wages. In particular, *ABIL* (ability), which is unobserved.

We also an additional variable: NEAR is a dummy variable that takes value 1 if the individual lived close to a university, and zero otherwise, for which we know that $C(NEAR, \varepsilon_1)$.

- a) Estimate model (S1) by OLS, using the subsample of white young men (i.e., restricting to WHITE = 1).
- b) Suppose that ABIL is actually a relevant variable, and $C(ABIL, ED) \neq 0$, while it is uncorrelated with the remaining explanatory variables in (E1). Will the OLS estimate of β_1 in (E1) consistently estimate the causal effect of education on wages? Justify.
- c) Consider the use of NEAR as an instrument. Estimate the auxiliary equation

$$ED = \pi_0 + \pi_1 EX + \pi_2 EX^2 + \pi_3 N EAR + v$$

Given the assumptions and the estimations above, can we assert that NEAR is a valid instrument for ED? Justify.

- d) Estimate model (S1) by 2SLS, using the subsample of white young men, and NEAR as instrument for ED.
- e) Is ED is exogenous? Justify. Given the results, choose the appropriate estimate of the causal effect of education on wages and interpret it.
- f) Consider now the full sample of both white and non-white young men. To account for ethnical differences, we consider the equation

$$\ln W = \beta_0 + \beta_1 ED + \beta_2 EX + \beta_3 EX^2 + \beta_4 WHITE + \beta_5 (ED \times WHITE) + \varepsilon_2 \quad (2)$$

Propose instruments for the two potentially endogenous variables, ED and $(ED \times WHITE)$. Estimate their corresponding first-stage equations and check the validity of the instruments.

- g) Estimate (E2) by OLS and 2SLS and compare the results. Are ED and $(ED \times WHITE)$ exogenous? What estimates would you choose? Justify.
- 4. In accordance with Friedman's Permanent Income Theory,

$$Y_i^* = \alpha + \beta X_i^* \tag{3}$$

César Alonso (UC3M)

where Y_i^* is 'permanent' consumption and X_i^* is 'permanent' ncome. Instead of observing the 'permanentes' variables, we observe

$$Y_i = Y_i^* + u_i$$
$$X_i = X_i^* + v_i$$

where Y_i , X_i measure with error $(u_i v_i)$ the corresponding variables of interest Y_i^* , X_i^* . Using the observed variables, we can write the consumption function as

$$Y_{i} = \alpha + \beta (X_{i} - v_{i}) + u_{i}$$
$$= \alpha + \beta X_{i} + (u_{i} - \beta v_{i})$$

a) Suppose that $E(u_i) = E(v_i) = 0$, $Var(u_i) = \sigma_u^2$, $Var(v_i) = \sigma_v^2$, $Cov(Y_i^*u_i) = 0$, $Cov(X_i^*v_i) = 0$, $Cov(u_iX_i^*) = Cov(v_iY_i^*) = Cov(v_iu_i) = 0$. Show that the OLS estimator of β , $\hat{\beta}$, converges in probability to

$$\frac{\beta}{1 + (\sigma_v^2 / \sigma_{X^*}^2)}$$

- b) Comment the sign of the asymptotic bias of $\hat{\beta}$.
- 5. The argument that inflation boosts economic growth has been neglected by empirical crosssection studies. Such studies regress the real income (GDP) growth on the inflation rate. Nevertheless, the variables measuring inflation and real income, X_i and Y_i , are subject to measurement error. Assume that, actually, there exists a exact relationship between real income growth, Y_i^* , and the true inflation rate, X_i^* . Also, it is assumed that the nominal income growth, $W_i^* = X_i^* + Y_i^*$ is correctly measured, so it can be used to measure real income growth. Then

$$Y_i = W_i^* - X_i$$

$$X_i = X_i^* + \varepsilon_i \qquad \varepsilon_i \sim iid(0, \sigma_{\varepsilon}^2)$$

- a) Derive the probabilistic limit of the OLS estimator of Y on X.
- b) Given the result above, what can be said about the future empirical results neglecting teha tinflation boosts growth?
- 6. Consider the following specification for demand and supply of wine in a country

$$q_i^D = \alpha_1 p_i + \alpha_2 y_i + u_{i1}$$
$$q_i^S = \beta p_i + u_{i2}$$
$$q_i^D = q_i^S = q_i$$

where, for municipality i, q_i is the wine consumption per household, p_i is the relative price of wine and y_i is the income per household. In the system above, price and demanded quantity are simultaneously determined, while the variable y_i is exogenous. All the variables are in logs. For a sample of size 1000, we have obtained the following statistics:

$$\sum_{i} p_{i}^{2} = 42 \qquad \sum_{i} p_{i}q_{i} = 5 \qquad \sum_{i} p_{i}y_{i} = 12$$

$$\sum_{i} y_{i}^{2} = 10 \qquad \sum_{i} y_{i}q_{i} = 3$$

$$\sum_{i}^{2} q_{i}^{2} = 11$$

Suppose that we are concerned with estimating a supply equation.

César Alonso (UC3M)

3

- a) Compute the OLS estimator of β e and interpret the coefficient. Is the estimator consistent? Justify.
- b) Is y_i a valid instrument for p_i ?. Justify. Compute the instrumental-variables estimator of β using such instrument.
- 7. A company selling sport goods is interested on evaluating the impact of clientsíncomes on its sales. For such purpose, it undertakes a survey for a sample of individuals who buy sport goods and considers the following specification:

$$expend = \beta_0 + \beta_1 inc + \beta_2 age + \beta_3 age^2 + \beta_4 gender + \beta_5 bach + \beta_6 south$$
(C)
+ $\beta_7 weight + \beta_8 weight \times gender + \beta_9 south \times gender + \varepsilon$

where for each individual,

expend is his/her annual expenditure in sport goods (in thousand euros),

inc is his/her annual income (in thousand euros),

age is his/her age in years,

gender is a binary variable which takes value 1 if the individual is a woman and 0 otherwise, bach denotes the individual's marital status, taking value 1 if bachelor and 0 otherwise,

south is a binary variable which takes value 1 if the individual lives in the south and 0 otherwise,

weight is his/her weight in kilograms.

Furthermore, income can be correlated with unobserved characteristics which, in turn, might affect expenditure in sport goods. If that is the case, then $C(inc, \varepsilon) \neq 0$. The remaining co-variates are not expected to be correlated with the error. In addition to the aforementioned covariates, there is information about the years of education of the individual (*educ*) and the years of education of his/her father (*educp*), which are also assumed to be uncorrelated with any unobserved characteristic affecting the expenditure in sport goods (ε). It is expected that individuals who are more educated or with more educater parents will have higher income. The following estimates have been obtained with Gretl (notice that some results may have been omitted):

OUTPUT 1: OLS estimates using the 935 observations 1-935Dependent variable: expend

	Coefficient	Std. Error	t-ratio	p-value
const	37,7486	31.5318	$1,\!1972$	0.2316
inc	$0,\!6671$	0.6138	$1,\!0869$	0.2774
age	$0,\!3401$	1.9090	$0,\!1782$	0.8586
age2	-0,0036	0.0014		
gender	-2,2428	0.6031	-3,7190	0.001
bach	0,7775			0.002
south	-0,1803	0.5536	-0,3257	0.7447
weight	-0,1025	0.0512	-2.0023	0.0455
weight imes gender	-0,0323	0.1506	-0,2144	0.8303
$\mathit{south} \! \times \! \mathit{gender}$	-0,0692	1.4793	-0,0468	0.9627

Mean dependent var	0.043929	S.D. dependent var	0.007224
Sum squared resid	0.047795	S.E. of regression	0.007188
R^2	0.019495	Adjusted \mathbb{R}^2	0.009955
F(9,925)	2.043539	P-value (F)	0.032059
Log-likelihood	3292.838	Akaike criterion	-6565.675
Schwarz criterion	-6517.270	Hannan–Quinn	-6547.218

NOTA: El \mathbb{R}^2 de una estimación similar a la anterior omitiendo gender, weight×gender y south×gender es 0,009495

OUTPUT 2: OLS estimates using the 935 observations 1–935 Dependent variable: inc

	Coefficient	Std.	Error	<i>t</i> -ratio	p-va	lue
const	1,2033]	1.8148	$0,\!6631$	0.50)75
age	-0,0577	().1103	-0,5233	0.60)10
age2	0,0006	(0.0017	$0,\!3597$	0.71	192
gender	$0,\!1523$	().0995	$1,\!5305$	0.12	263
bach	-0,1739	().0436	-3,9930	0.00	001
south	0,0589	().0315	1,8688	0.06	520
w eight	-0,0035	().0029	-1,2100	0.22	267
weight imes gender	-0,0165	(0.0102	$-1,\!6209$	0.10)55
$\mathit{south} \times \mathit{gender}$	0,0977	(0.0966	1,0111	0.31	123
educp	0,0138	(0.0047	2,9464	0.00)33
educ	0,0470	(0.0068	$6,\!9315$	0.00	000
Mean dependen	t var 0.9	75920	S.D.	dependent	var	0.405896
Sum squared re	sid 99	.17078	S.E.	of regressio	n	0.368579
R^2	0.1	86567	Adju	usted R^2		0.175424
F(10, 730)	16	.74310	P-va	lue(F)		1.79e-27
Log-likelihood	-30	6.2997	Akai	ke criterion		634.5994
Schwarz criterio	on 68	5.2874	Han	nan–Quinn		654.1416

NOTA: El \mathbb{R}^2 de una estimación similar a la anterior omitiendo *educp* y *educ* es 0,1717

OUTPUT 3: OLS estimates using the 935 observations 1–935 Dependent variable: expend

	Coefficient	Std. Er	ror <i>t</i> -ratio	o p-value	
const	48,0705	35.43	399 1,356	64 0.1754	
inc	-0,4594	0.20)69 -2,219	0.0267	
age	-0,4097	2.15	63 -0,190	00 0.8494	
age2	0,055	0.03	324 1,695	59 0.089 9	
gender	-0,5713	1.99	015 -0.286	0.7743	
bach	-0,2548	0.90	057 - 0,281	13 0.7786	
south	$0,\!1037$	0.63	648 0,163	B 4 0.8703	
w eight	-0,1139	0.05	668 - 2,004	0.0454	
weight imes gender	-0,2221	0.20	004 -1,108	82 0.2681	
$\mathit{south} \! \times \! \mathit{gender}$	$1,\!6185$	1.88	0,858	.3908 0.3908	
resid imes inc	$6,\!3914$	2.19	015 2,916	64 0.0036	
Mean dependen	t var 0.0	43929 S.	.D. depende	nt var 0.0	07224
Sum squared re	sid 0.0	37615 S.	E. of regres.	sion 0.0	07178
R^2	0.0	28753 A	djusted R^2	0.0	15448
F(10, 730)	2.1	61070 P	-value(F)	0.0	18389
Log-likelihood	-250	06.447 A	kaike criter	ion 503	4.894
Schwarz criterio	on 508	85.582 H	annan–Quir	nn 505	64.436

OUTPUT 4: TSLS, using the 935 observations 1–935 Dependent variable: *expend* Instrumented: *inc*

Instruments: const age age2 gender bach south weight weight \times gender south \times gender feduc educ

	Coefficient	Std. Error	z	p-value
const	48,0705	37.2741	$1,\!2896$	0.1972
inc	$4,\!5944$	2.1767	$2,\!1107$	0.0348
age	-0,4097	2.2679	-0,1806	0.8566
age2	$0,\!0055$	0.0341	0,1620	0.8713
gender	$-0,\!5713$	2.0946	-0,2727	0.7850
bach	-0,2548	0.9526	-0,2675	0.7891
south	$0,\!1037$	0.6676	$0,\!1553$	0.8766
weight	-0,1139	0.0598	$-1,\!9060$	0.0566
weight imes gender	-0,2221	0.2107	$-1,\!0537$	0.2920
$\mathit{south} \! \times \! \mathit{gender}$	$1,\!6185$	1.9822	$0,\!8165$	0.4142
Mean dependent	var 0.04392	29 S.D. de	pendent var	0.007224
Sum squared resi	d 0.0416	66 S.E. of	regression	0.007549
R^2	0.0000	06 Adjuste	ed R^2	-0.012306
F(9,731)	1.5464	37 P-value	(F)	0.127654

a) In the baseline model, ¿can we assert that

E(expend|inc, age, gender, bach, south, weight) = L(expend|inc, age, gender, bach, south, weight)?

Justify.

- b) Given the available evidence and the assumptions above, can be establish that *educp* and *educ* are valid instruments for *inc*? Justify your answer, indicating the evidence in which you base it.
- c) Can we assert that *inc* is endogenous? Justify.
- d) We want to test whether the expenditure in sport goods is independent of gender. Write the null and the alternative hypotheses in terms of the model parameters. Explain how you would build the test statistic and, if there is the information required, implement the test. Otherwise, explain what information is missing.

