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1 Fourier series

1.1 Square integrable functions

We define the space of square integrable functions on an interval [a, b], denoted by L2[a, b], as

L2[a, b] =
{
f : [a, b]→ C :

∫ b

a
|f(x)|2 dx <∞

}
.

If we identify functions that are equal almost everywhere (f = g a.e., that is, the set {f 6= g}
has zero length), then

‖f‖2 =
(∫ b

a
|f(x)|2 dx

)1/2
defines a norm on L2[a, b], i.e.,

• ‖f‖2 ≥ 0 for every function f ∈ L2[a, b], and ‖f‖2 = 0⇐⇒ f = 0.

• ‖αf‖2 = |α| ‖f‖2 for every function f ∈ L2[a, b], and every scalar α.

• The triangle inequality holds: ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 for every functions f, g ∈ L2[a, b].

Recall that a norm induces a distance, called its (norm) induced metric, by the formula d(f, g) =
‖f − g‖2, which make the normed vector space L2[a, b] into a metric space:

• d(f, g) ≥ 0 for every functions f, g ∈ L2[a, b], and d(f, g) = 0⇐⇒ f = g.

• The triangle inequality holds: d(f, h) ≤ d(f, g) + d(g, h) for every functions f, g, h ∈ L2[a, b].

Also, L2[a, b] is an inner product space with inner product given by

〈f, g〉 =

∫ b

a
f(x) g(x) dx,

that is,

• 〈f, f〉 ≥ 0 for every function f ∈ L2[a, b], and 〈f, f〉 = 0⇐⇒ f = 0.

• 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉 for every functions f, g, h ∈ L2[a, b], and every scalars α, β.

• 〈g, f〉 = 〈f, g〉 for every functions f, g ∈ L2[a, b].

We say that ‖ · ‖2 is the induced norm by the inner product 〈·, ·〉, that is, ‖f‖2 = 〈f, f〉 for every
f ∈ L2[a, b].

The following important properties hold:

• ‖f + g‖2 ≥
∣∣‖f‖2 − ‖g‖2∣∣ for every functions f, g ∈ L2[a, b].

•
∥∥∑n

k=1 fk
∥∥
2
≤
∑n

k=1 ‖fk‖2 for every functions f1, . . . , fn ∈ L2[a, b].

• f/‖f‖2 has norm 1 for every function f ∈ L2[a, b] \ {0}.
•
∣∣〈f, g〉∣∣ ≤ ‖f‖2‖g‖2 for every functions f, g ∈ L2[a, b] (Cauchy-Schwarz inequality).

• ‖f + g‖22 + ‖f − g‖22 = 2‖f‖22 + 2‖g‖22 for every functions f, g ∈ L2[a, b] (parallelogram law).

• 〈f, g〉 = 1
4

(
‖f + g‖22 − ‖f − g‖22 + i‖f + ig‖22 − i‖f − ig‖22

)
for every functions f, g ∈ L2[a, b]

(polarization identity).

• 〈f, g〉 = 1
4

(
‖f + g‖22 − ‖f − g‖22

)
for every functions f, g ∈ L2[a, b] with real values.

It can be shown that square integrable functions form a complete metric space under the metric
induced by the inner product defined above, that is, the sequences in such metric spaces converge
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if and only if they are Cauchy sequences. L2[a, b] is a Hilbert space, that is, it is a complete
space under the metric induced by the inner product.

We say that {en}∞n=1 is an orthogonal set if 〈en, em〉 = 0 for every n 6= m; {en}∞n=1 is an
orthonormal set if it is orthogonal and ‖en‖2 = 〈en, en〉 = 1 for every n.

We say that {en}∞n=1 is an orthogonal basis of L2[a, b] if it is an orthogonal set and every element
f of L2[a, b] may be written as

f =
∞∑
n=1

〈f, en〉
‖en‖2

en.

When {en}∞n=1 is orthonormal, we have

f =
∞∑
n=1

〈f, en〉 en.

This sum is called the Fourier expansion of f , and has the following consequences

〈f, g〉 =
∞∑
n=1

〈f, en〉〈g, en〉
‖en‖2

,

∫ b

a
f(x) g(x) dx =

∞∑
n=1

∫ b
a f(x) en(x) dx

∫ b
a g(x) en(x) dx∫ b

a |en(x)|2 dx
.

and

〈f, f〉 =
∞∑
n=1

∣∣〈f, en〉∣∣2
‖en‖2

,

∫ b

a
|f(x)|2 dx =

∞∑
n=1

∣∣ ∫ b
a f(x) en(x) dx

∣∣2∫ b
a |en(x)|2 dx

.

which is called Parseval’s identity.

1.2 Definitions and previous results

Given a function f : [−L,L] −→ R, its Fourier series is defined as:

1

2
a0 +

∞∑
n=1

an cos
nπx

L
+
∞∑
n=1

bn sin
nπx

L
,

where their Fourier coefficients are defined by the formulas:

an = an
(
f
)

=
1

L

∫ L

−L
f(x) cos

nπx

L
dx , n ≥ 0 ,

bn = bn
(
f
)

=
1

L

∫ L

−L
f(x) sin

nπx

L
dx , n ≥ 1 .

Note that these coefficients are well defined if f is integrable on the interval [−L,L].

The first problem we have to ask ourselves is under what conditions the Fourier series converge.
In order to obtain the simplest convergence criterion for such series we need to introduce some
definitions.

2



We say that f(x) has a jump discontinuity at the point x = a, if there exist both the left-hand
limit limx→a− f(x) = f(a−) as well as the right-hand limit limx→a+ f(x) = f(a+), and they are
distinct.

A function f(x) is said to be piecewise continuous on [−L,L] if the interval can be divided into
subintervals, such that f(x) is continuous on each open subinterval, and the one-sided limits
exist at the ends of the subintervals. Therefore, at the ends of the subintervals f(x) can either
be continuous or have jump discontinuities.

A function f(x) is said to be piecewise continuously differentiable or piecewise C1 on [−L,L] if
f(x) and f ′(x) are piecewise continuous on that interval.

A function f(x) is said to be periodic with period P or P -periodic if f(x+ P ) = f(x) for all x
in the domain of f .

The Fourier series of f(x) on [−L,L] is a 2L-periodic function, but since f(x) is not necessarily
periodic, to study the convergence of the series it is necessary to consider the periodic extension
of f(x).

Since a function f(x) can be different from its Fourier series on the interval [−L,L], since the
series may not converge, and if it does converge, it may not converge to f(x), instead of the
equality symbol we will use the notation

f(x) ∼ 1

2
a0 +

∞∑
n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
,

where the symbol ∼ means that the series is the Fourier series of f(x), even if the series diverges
or converges at some point x to a value other than f(x).

Theorem 1.1 (Convergence theorem for Fourier series) If f(x) is piecewise continuously dif-
ferentiable on [−L,L], then the Fourier series of f(x) converges:
• to the periodic extension of f , at those points x for which the periodic extension of f is
continuous,
• to the average of the two side limits of the periodic extension of f

1

2

(
f(x+) + f(x−)

)
,

at those points x for which the periodic extension of f has a jump discontinuity (here, the periodic
extension of f is denoted by f also).

Next we will consider the series that only contain sines and those that only contain cosines,
which are special cases of Fourier series.

Recall that a function f(x) is odd if f(−x) = −f(x), and f(x) is even if f(−x) = f(x).

The Fourier coefficients of an odd function verify that an = 0 for all n ≥ 0, since the integrand
f(x) cos(nπx/L) that appears in the definition of these coefficients is an odd function. Therefore,
the cosine functions do not appear in the Fourier series of an odd function. The Fourier series
of an odd function is a sine series (which is an odd function):

f(x) ∼
∞∑
n=1

bn sin
nπx

L
,
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where the coefficients verify:

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx =

2

L

∫ L

0
f(x) sin

nπx

L
dx , n ≥ 1 .

When a function f is defined on [0, L] and we need its Fourier sine series we define the periodic odd
extension of f as the function of period 2L such that

F (x) =

{
f(x), x ∈ [0, L],
−f(−x), x ∈ (−L, 0) ,

and the Fourier series on [−L,L] of this odd extension is the Fourier sine series of f on [0, L].

Example 1.2 The odd extension of f(x) = x on [0, L] to [−L,L] is F (x) = x and its Fourier
sine series on [0, L] is

x ∼
∞∑
n=1

2L(−1)n+1

nπ
sin

nπx

L
.

If f is an even function, by the symmetry, bn = 0 for every n ≥ 1, so we get that the Fourier
series of an even function is a cosine series

f(x) ∼ 1

2
a0 +

∞∑
n=1

an cos
nπx

L
,

with coefficients

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx =

2

L

∫ L

0
f(x) cos

nπx

L
dx.

Given a function f on [0, L], when we need its Fourier cosine series we define the periodic even
extension of f as the function of period 2L such that

F (x) =

{
f(x), x ∈ [0, L],
f(−x), x ∈ (−L, 0) ,

and the Fourier series of this extension to [−L,L] is the Fourier cosine series of f on [0, L].

Example 1.3 The even extension of f(x) = x on [0, L] to [−L,L] is F (x) = |x| and its Fourier
cosine series on [0, L] is

x ∼ L

2
+

∞∑
k=0

−4L

(2k + 1)2π2
cos

(2k + 1)πx

L
.

As a consequence of the previous definitions and the convergence of the Fourier series we have
the following result.

Theorem 1.4 1. General Fourier series. If f is piecewise C1 on (−L,L), then its
Fourier series is continuous if and only if f is continuous on [−L,L] and f(−L) = f(L).

2. Cosine series. If f is piecewise C1 on (0, L), then its Fourier cosine series is continuous
if and only if f is continuous on [0, L].
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3. Sine series. If f is piecewise C1 on (0, L), then its Fourier sine series is continuous if
and only if f is continuous on [0, L] and f(0) = f(L) = 0.

Observe that the series that needs more conditions is the sine series and the series that requires
less conditions is the cosine series.
When we use Fourier series to solve PDEs it is necessary to derive and to integrate this kind of
expressions. Now we study the conditions with which this can be done.

Theorem 1.5

1. General Fourier series. If the Fourier series of f is continuous and f ′ is piecewise C1,
then it can be derived term by term, and the series we obtain is the Fourier series of f ′

(that converges to f ′ at the points of continuity of f ′).

2. Fourier cosine series. If f is continuous on [0, L] and f ′ is piecewise C1 on (0, L), then
its Fourier cosine series can be derived term by term, and the series we obtain is the Fourier
sine series of f ′ (that converges to f ′ at the points of continuity of f ′).

3. Fourier sine series. If f is continuous on [0, L] and f ′ is piecewise C1 on (0, L), then its
Fourier sine series can be derived term by term if and only if f(0) = f(L) = 0. In case
we can derive term by term, the series we obtain is the Fourier cosine series of f ′ (that
converges to f ′ at the points of continuity of f ′).

Observe that, again, the sine series are more demanding. Nevertheless, if we have a sine series
of a function f that is continuous on [0, L] and piecewise C1 on (0, L),

f(x) ∼
∞∑
n=1

bn sin
nπx

L
,

it can be proved that the Fourier cosine series of the derivative is

f ′(x) ∼ 1

L

(
f(L)− f(0)

)
+

∞∑
n=1

(
nπ

L
bn +

2

L

(
(−1)nf(L)− f(0)

))
cos

nπx

L
,

and, as can be seen directly, this coincides with the derivative term by term of the Fourier sine
series of f if and only if f(0) = f(L) = 0.

Theorem 1.6 If f : R→ R is a 2L-periodic continuous function and f ′ is piecewise continuous
on [−L,L], then the Fourier series converges uniformly to f .

Definition 1.7 If SN (x; f) denotes the N-th Fourier sum of f :

SN (x; f) =
1

2
a0 +

N∑
n=1

an cos
nπx

L
+

N∑
n=1

bn sin
nπx

L
,

the N-th Cesàro sum CN (x; f) of f is defined as:

CN (x; f) =
1

N + 1

(
S0(x; f) + S1(x; f) + · · ·+ SN (x; f)

)
=

1

N + 1

N∑
n=0

Sn(x; f).
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Theorem 1.8 If f : R → R is a 2L-periodic continuous function, then the sequence of Cesàro
partial sums CN (x; f) converges uniformly to f .

The above result means that every continuous and 2L-periodic function in the real line can be
uniformly approximated by trigonometric polynomials.

Sometimes we need the derivative with respect to variables that do not appear in the eigenfunc-
tions, and this is easy.

Theorem 1.9 If u = u(x, t) is a continuous function on [−L,L]× [0,∞) and ∂u/∂t is piecewise
C1 as a function of x ∈ (−L,L) for every t ∈ [0,∞), then its Fourier series

u(x, t) =
1

2
a0(t) +

∞∑
n=1

an(t) cos
nπx

L
+

∞∑
n=1

bn(t) sin
nπx

L
,

can be derived term by term with respect to the parameter t, and we obtain

∂u

∂t
(x, t) ∼ 1

2
a′0(t) +

∞∑
n=1

a′n(t) cos
nπx

L
+

∞∑
n=1

b′n(t) sin
nπx

L
.

With respect to integration we have that the three Fourier series can be integrated term by term,
and the result is a series that is convergent for all x ∈ [−L,L] to the integral of f . However, it
may happen that the series we obtain is not a Fourier series. In fact, given the series

f(x) ∼ 1

2
a0 +

∞∑
n=1

an cos
nπx

L
+
∞∑
n=1

bn sin
nπx

L
,

term by term integration gives∫ x

−L
f(t) dt ∼ 1

2
a0(x+ L) +

∞∑
n=1

(
anL

nπ
sin

nπx

L
+
bnL

nπ

(
(−1)n − cos

nπx

L

))
,

that, as can be seen easily, is a Fourier series if and only if a0 = 0.

Fourier series have interesting properties; some of them appear in the following formulas (next,
we assume that f and g are integrable on [−L,L] and α, β ∈ R):

(FSa) an
(
αf + βg

)
= αan

(
f
)

+ β an
(
g
)

(n ≥ 0) ,

bn
(
αf + βg

)
= α bn

(
f
)

+ β bn
(
g
)

(n ≥ 1) ,

(FSb) if f is continuous and f ′ is piecewise continuous on [−L,L], and f(−L) = f(L), then

a0
(
f ′
)

= 0 , an
(
f ′
)

=
nπ

L
bn
(
f
)

and bn
(
f ′
)

=
−nπ
L

an
(
f
)

(n ≥ 1) ,

(FSc) if f and f ′ are continuous and f ′′ is piecewise continuous on [−L,L], f(−L) = f(L),

and f ′(−L) = f ′(L), then

a0
(
f ′′
)

= 0 , an
(
f ′′
)

= −
(nπ
L

)2
an
(
f
)

and bn
(
f ′′
)

= −
(nπ
L

)2
bn
(
f
)

(n ≥ 1) ,

(FSd) sup
n≥0
|an| ≤

1

L

∫ L

−L

∣∣f(x)
∣∣ dx , sup

n≥1

∣∣bn∣∣ ≤ 1

L

∫ L

−L

∣∣f(x)
∣∣ dx ,

(FSe)
1

L

∫ L

−L

∣∣f(x)
∣∣2dx =

1

2
|a0|2 +

∞∑
n=1

|an|2 +

∞∑
n=1

∣∣bn∣∣2 (Parseval’s identity) ,

(FSf)
1

L

∫ L

−L
f(x) g(x) dx =

1

2
a0
(
f
)
a0
(
g
)

+
∞∑
n=1

an
(
f
)
an
(
g
)

+
∞∑
n=1

bn
(
f
)
bn
(
g
)
.
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TABLE OF FOURIER SERIES (k ≥ 1, a ∈ R, R > r > 0)

(FS1) f(x) = 1 , a0 = 2 , an = bn = 0 (n ≥ 1) ,

(FS2) f(x) = cos
kπx

L
, ak

(
f
)

= 1 , an = 0 (n 6= k) , bn = 0 (n ≥ 1) ,

(FS3) f(x) = sin
kπx

L
, an = 0 (n ≥ 0) , bk = 1 , bn = 0 (n 6= k) ,

(FS4) f(x) = x , an = 0 (n ≥ 0) , bn = (−1)n+1 2L

nπ
(n ≥ 1) ,

(FS5) f(x) = x2, a0 =
2

3
L2, an = (−1)n

4L2

n2π2
(n ≥ 1) , bn = 0 (n ≥ 1) ,

(FS6) f(x) = eax, an = (−1)n
2aL sinh aL

a2L2 + n2π2
, bn = (−1)n+1 2πn sinh aL

a2L2 + n2π2
.

(FS7) f(x) =
R2 − r2

R2 − 2Rr cosx+ r2
, (with L = π) , an = 2

rn

Rn
, bn = 0 .

Useful integral formulas for Fourier series (a, b, k ∈ R)

(I1)

∫ L

−L
sin

mπx

L
cos

nπx

L
dx = 0 , m ≥ 1 , n ≥ 0 ,

(I2)

∫ L

−L
cos

mπx

L
cos

nπx

L
dx =


0 , if m 6= n , m, n ≥ 0 ,

L , if m = n ≥ 1 ,

2L , if m = n = 0 ,

(I3)

∫ L

−L
sin

mπx

L
sin

nπx

L
dx =

{
0 , if m 6= n , m, n ≥ 1 ,

L , if m = n ≥ 1 .

(I4)

∫
xk cos bx dx =

1

b
xk sin bx− k

b

∫
xk−1 sin bx dx ,

(I5)

∫
xk sin bx dx =

−1

b
xk cos bx+

k

b

∫
xk−1 cos bx dx ,

(I6)

∫
eax cos bx dx =

1

a2 + b2
eax
(
b sin bx+ a cos bx

)
,

(I7)

∫
eax sin bx dx =

1

a2 + b2
eax
(
a sin bx− b cos bx

)
.

1.3 Complex Fourier series

Given a function f : [−L,L] −→ C, its complex Fourier series is defined as:

∞∑
n=−∞

cne
inπx
L ,

where their complex Fourier coefficients are defined by the formula:

cn = cn
(
f
)

=
1

2L

∫ L

−L
f(x)e−

inπx
L dx , n ∈ Z .

This series can be obtained from the (real) Fourier series, by using the identities
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cos z = 1
2(eiz + e−iz) and sin z = 1

2i(e
iz − e−iz).

We have in this case the Parseval’s identity∫ L

−L

∣∣f(x)
∣∣2dx = 2L

∞∑
n=−∞

|cn|2 ,∫ L

−L
f(x) g(x) dx = 2L

∞∑
n=−∞

cn
(
f
)
cn
(
g
)
.

1.4 Application to partial differential equations

A partial differential equation is an equation in which the unknown is a function of several
variables and such that the equation relates this function to some of its partial derivatives. In
particular, we are going to study partial differential equations of the type L[u](x, t) = 0, where
L is a linear operator with constant coefficients of the form:

L[u] = A
∂2u

∂x2
+B

∂2u

∂t2
+ C

∂2u

∂x∂t
+D

∂u

∂x
+ E

∂u

∂t
+ F u ,

where A,B,C,D,E, F ∈ R and u = u(x, t) is the unknown function we want to find.
We say that L is a linear operator because L[αu+ βv] = αL[u] + βL[v] for every functions u, v
and constants α, β ∈ R.
We are going to apply the method of separation of variables, in order to solve the heat equation
on a rod with zero temperature at finite ends.

The problem is described by
∂u

∂t
= k

∂2u

∂x2
, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t > 0, (Dirichlet BC)
u(x, 0) = f(x), 0 < x < L. (IC)

We look for product solutions of the form u(x, t) = ϕ(x)T (t) that satisfy the equation and obtain

T ′

kT
=
ϕ′′

ϕ
= −λ,

where λ is an arbitrary constant. We also separate the boundary conditions{
u(0, t) = ϕ(0)T (t) = 0 ∀t =⇒ ϕ(0) = 0,
u(L, t) = ϕ(L)T (t) = 0 ∀t =⇒ ϕ(L) = 0,

because T (t) ≡ 0 implies u(x, t) ≡ 0, that is not a valid solution since u(x, 0) = f(x). Then, we
have:
Time equation. T ′ = −λkT =⇒ T (t) = e−kλt.
Eigenvalue problem. {

ϕ′′ + λϕ = 0, 0 < x < L,
ϕ(0) = 0, ϕ(L) = 0.

We are going to see that for some values of λ there exists a non trivial solution. Since the
characteristic equation is r2 + λ = 0 there are three different cases:
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Case 1. λ < 0 =⇒ r = ±
√
−λ , two different real roots, so for c1, c2 arbitrary constants,

ϕ(x) = c1e
√
−λx + c2e

−
√
−λx,

ϕ(0) = ϕ(L) = 0 =⇒ c1 = c2 = 0 =⇒ ϕ(x) ≡ 0.

Case 2. λ = 0 =⇒ r = 0, double root,

ϕ(x) = c1 + c2x,
ϕ(0) = ϕ(L) = 0 =⇒ c1 = c2 = 0 =⇒ ϕ(x) ≡ 0.

Case 3. λ > 0 =⇒ r = ±i
√
λ , pure imaginary roots,

ϕ(x) = c1 sin
(√
λx
)

+ c2 cos
(√
λx
)


ϕ(0) = 0 =⇒ c2 = 0,

ϕ(L) = 0 =⇒ c1 sin
(√
λL
)

= 0 =⇒
{
c1 = 0 =⇒ ϕ(x) ≡ 0,

sin
(√
λL
)

= 0.

The last condition implies that
√
λL = nπ, n = 1, 2, . . . This gives us the eigenvalues and

eigenfunctions

λn =
(nπ
L

)2
, ϕn(x) = sin

nπx

L
, n = 1, 2, . . .

We have found the product solutions

un(x, t) = sin
nπx

L
e−k(nπ/L)

2t, n = 1, 2, . . .

Using the superposition principle, any linear combination will also be a solution. In fact, if the
series

u(x, t) =
∞∑
n=1

bn sin
nπx

L
e−k(nπ/L)

2t

converges “properly” then it will be also a solution of the heat equation with zero boundary
conditions.
The initial condition is satisfied if we can find the coefficients bn such that the initial condition
can be written in the form

f(x) =
∞∑
n=1

bn sin
nπx

L
.

This expression is a Fourier sine series and we have that

bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx.

Finally, the solution of our heat problem is

u(x, t) =
∞∑
n=1

(
2

L

∫ L

0
f(y) sin

nπy

L
dy

)
e−k(nπ/L)

2t sin
nπx

L

=

∫ L

0
f(y)

(
2

L

∞∑
n=1

sin
nπx

L
sin

nπy

L
e−k(nπ/L)

2t

)
dy

=

∫ L

0
f(y)G(x, y, t) dy.
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The function G is known as Green function of the problem.
This method can also be applied with different boundary conditions. It can be applied in the
wave equation and in Laplace’s equation, even with more variables. The important question is
to solve the eigenvalue problem and characterize the orthogonality relations.

1.5 Application to periodic signals: energy of a signal

A signal is a real (or complex) valued function, e.g., voltage across a resistor or current through
inductor, pressure at a point in the ocean, etc.
If a signal is 2L-periodic, we define its mean energy as

1

2L

∫ L

−L

∣∣f(x)
∣∣2dx.

By Parseval’s identity, we can write the mean energy of a signal in terms of the coefficients of
its Fourier series

1

2L

∫ L

−L

∣∣f(x)
∣∣2dx =

1

4
|a0|2 +

1

2

∞∑
n=1

|an|2 +
1

2

∞∑
n=1

∣∣bn∣∣2.
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