uc3m Departamento de Matemáticas

Complex variable and transforms. Problems
Chapter 1: Complex variable
Section 1.2: Holomorphic functions

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

1.2. HOLOMORPHIC FUNCTIONS

2.1. At what points are the following functions differentiable in complex sense?
a) $f(z)=|z|$,
b) $f(z)=|z|^{2}$,
c) $f(z)=|z|^{\alpha}, \quad \alpha>0$,
d) $f(z)=\sqrt{|x y|}, \quad z=x+i y$,
e) $f(z)=\bar{z}$,
f) $f(z)=h(x), \quad h \in C^{1}(\mathbf{R}, \mathbf{C})$,
g) $f(z)=h(y), \quad h \in C^{1}(\mathbf{R}, \mathbf{C})$,
h) $f(z)=h(x, y), \quad h \in C^{1}(\mathbf{R} \times \mathbf{R}, \mathbf{R})$,
i) $f(z)=\frac{1}{z^{2}}+|z|^{2}$,
j) $f(z)=z \operatorname{Re} z$,
k) $f(z)=\frac{1}{(z+1 / z)^{2}}$,
l) $f(z)=e^{z}:=e^{x} \cos y+i e^{x} \sin y$,
m) $f(z)=e^{z^{3} /(z+3)}$.
2.2. Find a holomorphic function f with real part:
a) $u(x, y)=a x+b y+c, \quad a, b, c \in \mathbf{R}$,
b) $u(x, y)=e^{-x}(x \sin y-y \cos y)$,
c) $u(x, y)=e^{-y} \cos x$,
d) $u(x, y)=\frac{x}{x^{2}+y^{2}}$,
e) $u(x, y)=e^{x^{2}-y^{2}} \sin 2 x y$,
f) $u(x, y)=x e^{-x} \cos y+y e^{-x} \sin y$,
g) $u(x, y)=\sin x \cosh y+2 \cos x \sinh y+x^{2}-y^{2}+4 x y$,
h) $u(x, y)=\log \sqrt{x^{2}+y^{2}}$,
i) $u(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$,
j) $u(x, y)=\sum_{k=0}^{n}(-1)^{k}\binom{2 n}{2 k} x^{2 n-2 k} y^{2 k}$.

In which domain is f holomorphic in each case?
2.3. a) Prove that a harmonic function u on an open connected set U has a harmonic conjugate if and only if there exists a holomorphic function f on U such that $f^{\prime}=u_{x}-i u_{y}$.
b) Let $z_{0}=x_{0}+i y_{0}$ and $u \in \mathbf{C}^{2}\left(D\left(z_{0}, r\right)\right)$ be a harmonic function. Prove that

$$
v\left(x_{1}, y_{1}\right)=c+\int_{y_{0}}^{y_{1}} \frac{\partial u}{\partial x}\left(x_{1}, y\right) d y-\int_{x_{0}}^{x_{1}} \frac{\partial u}{\partial y}\left(x, y_{0}\right) d x
$$

is a harmonic conjugate of u on $D\left(z_{0}, r\right)$ with $v\left(x_{0}, y_{0}\right)=c$.

Hint: You can use the Fundamental Theorem of Calculus in order to compute the partial derivatives of $v\left(x_{1}, y_{1}\right)$.
2.4. Prove that the Cauchy-Riemann equations on polar coordinates are

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

2.5. Using if required the Cauchy-Riemann equations on polar coordinates, find the holomorphic function verifying:
a) its modulus is $e^{r^{2} \cos 2 \theta}$,
b) its modulus is $\left(x^{2}+y^{2}\right) e^{x}$,
c) its argument is $x y$,
d) its argument is $\theta+r \sin \theta$,
e) its real part is $\frac{\cos \theta+\sin \theta}{r}$.

In which domain is f holomorphic in each case?
Hint: $a)$ and $c):$ if $p(z)$ is a polynomial, then $e^{p(z)}$ is a holomorphic function.
2.6. If $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$, with $a, b, c, d \in \mathbf{R}$, for what values of a, b, c, d is u harmonic?
2.7. Find the harmonic functions which can be written as:
a) $g(a x+b y), \quad a, b \in \mathbf{R}$,
b) $g\left(x^{2}+y^{2}\right)$,
c) $g(x y)$,
d) $g\left(x+\sqrt{x^{2}+y^{2}}\right)$,
e) $g\left(\left(x^{2}+y^{2}\right) / x\right)$,
f) $g(y / x)$,
with g a real function of class C^{2}. Find in each case the holomorphic functions whose real parts are these functions.
2.8. Find a holomorphic function f on \mathbf{C} such that $f(1+i)=0, f^{\prime}(0)=0$ and $\operatorname{Re} f^{\prime}(z)=3\left(x^{2}-y^{2}\right)-4 y$.
2.9. Prove that if u and v are harmonic functions and $\alpha, \beta \in \mathbf{R}$, then $\alpha u+\beta v$ is harmonic. For what harmonic functions u is also harmonic the function u^{2} ?

Hint: $\Delta\left(u^{2}\right)=2|\nabla u|^{2}+2 u \Delta u$.
2.10. Let U be an open connected subset of \mathbf{C} and $f: U \longrightarrow \mathbf{C}$ a holomorphic function. Prove the following statements:
a) If $f^{\prime}(z)=0$ on U, then f is constant on U.
b) If $\operatorname{Re} f$ is constant on U, then f is constant on U.
c) If $\operatorname{Im} f$ is constant on U, then f is constant on U.
d) If $|f|$ is constant on U, then f is constant on U.
e) If \bar{f} is holomorphic on U, then f is constant on U.
2.11. Assume that f is holomorphic on $\mathbf{D}=\{z \in \mathbf{C}:|z|<1\}$. Study if each function g below is holomorphic on \mathbf{D} :
a) $g(z)=\overline{f(z)}$,
b) $g(z)=f(\bar{z})$,
c) $g(z)=\overline{f(\bar{z})}$,
d) $g(z)=|f(z)|$,
e) $g(z)=f(z) f(\bar{z})$.

Do we get the same result if we replace \mathbf{D} by any domain A ? And if A satisfies that $z \in A \Leftrightarrow \bar{z} \in A$?
2.12. Prove that if $h: \mathbf{R}^{2} \longrightarrow \mathbf{R}$ is of class C^{2} and f is holomorphic, then

$$
\Delta(h \circ f)=\Delta h(f) \cdot\left|f^{\prime}\right|^{2}
$$

2.13. Prove that $f(z)=z^{2}$ is holomorphic on \mathbf{C} by checking that if satisfies the Cauchy-Riemann equations. If $f\left(z_{0}\right)=a+b i$, prove that the curves $\operatorname{Re} f(z)=a$ and $\operatorname{Im} f(z)=b$ are orthogonal at z_{0}.

Hint: Prove that the inner product of the tangent vectors of the two curves is 0 .
2.14. Find all the holomorphic functions which can be written as $u(x)+i v(y)$.
2.15. a) If $Q(z)$ is a polynomial with different roots z_{1}, \ldots, z_{n}, and if $P(z)$ is a polynomial of degree less than n, prove that

$$
\frac{P(z)}{Q(z)}=\sum_{k=1}^{n} \frac{P\left(z_{k}\right)}{Q^{\prime}\left(z_{k}\right)\left(z-z_{k}\right)}
$$

b) Prove that there exists a unique polynomial p of degree less than n with $p\left(z_{k}\right)=w_{k}$ (Lagrange's interpolation formula).

Hints: a) $P(z)$ and $\sum_{k=1}^{n} \frac{P\left(z_{k}\right) Q(z)}{Q^{\prime}\left(z_{k}\right)\left(z-z_{k}\right)}$ have the same values at z_{1}, \ldots, z_{n}. b) Use the formula in the previous item.

