uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Complex variable and transforms. Problems

Chapter 1: Complex variable Section 1.2: Holomorphic functions

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

1.2. HOLOMORPHIC FUNCTIONS

2.1. At what points are the following functions differentiable in complex sense?

a)
$$f(z) = |z|$$
,
b) $f(z) = |z|^2$,
c) $f(z) = |z|^{\alpha}$, $\alpha > 0$,
d) $f(z) = \sqrt{|xy|}$, $z = x + iy$,
e) $f(z) = \overline{z}$,
f) $f(z) = h(x)$, $h \in C^1(\mathbf{R}, \mathbf{C})$,
g) $f(z) = h(y)$, $h \in C^1(\mathbf{R} \times \mathbf{R}, \mathbf{R})$,
h) $f(z) = h(x, y)$, $h \in C^1(\mathbf{R} \times \mathbf{R}, \mathbf{R})$,
i) $f(z) = \frac{1}{z^2} + |z|^2$,
j) $f(z) = z \operatorname{Re} z$,
k) $f(z) = \frac{1}{(z + 1/z)^2}$,
l) $f(z) = e^z := e^x \cos y + ie^x \sin y$,
m) $f(z) = e^{z^3/(z+3)}$.

2.2. Find a holomorphic function f with real part:

a)
$$u(x, y) = ax + by + c$$
, $a, b, c \in \mathbf{R}$,
b) $u(x, y) = e^{-x}(x \sin y - y \cos y)$,
c) $u(x, y) = e^{-y} \cos x$,
d) $u(x, y) = \frac{x}{x^2 + y^2}$,
e) $u(x, y) = e^{x^2 - y^2} \sin 2xy$,
f) $u(x, y) = x e^{-x} \cos y + y e^{-x} \sin y$,
g) $u(x, y) = \sin x \cosh y + 2 \cos x \sinh y + x^2 - y^2 + 4xy$,
h) $u(x, y) = \log \sqrt{x^2 + y^2}$,
i) $u(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$,
j) $u(x, y) = \sum_{k=0}^{n} (-1)^k {\binom{2n}{2k}} x^{2n-2k} y^{2k}$.

In which domain is f holomorphic in each case?

2.3. a) Prove that a harmonic function u on an open connected set U has a harmonic conjugate if and only if there exists a holomorphic function f on U such that $f' = u_x - iu_y$.

b) Let $z_0 = x_0 + iy_0$ and $u \in \mathbf{C}^2(D(z_0, r))$ be a harmonic function. Prove that

$$v(x_1, y_1) = c + \int_{y_0}^{y_1} \frac{\partial u}{\partial x}(x_1, y) \, dy - \int_{x_0}^{x_1} \frac{\partial u}{\partial y}(x, y_0) \, dx$$

is a harmonic conjugate of u on $D(z_0, r)$ with $v(x_0, y_0) = c$.

Hint: You can use the Fundamental Theorem of Calculus in order to compute the partial derivatives of $v(x_1, y_1)$.

2.4. Prove that the Cauchy-Riemann equations on polar coordinates are

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} , \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta} .$$

2.5. Using if required the Cauchy-Riemann equations on polar coordinates, find the holomorphic function verifying:

a) its modulus is $e^{r^2 \cos 2\theta}$, b) its modulus is $(x^2 + y^2) e^x$, c) its argument is xy, d) its argument is $\theta + r \sin \theta$, e) its real part is $\frac{\cos \theta + \sin \theta}{r}$.

In which domain is f holomorphic in each case?

Hint: a) and c): if p(z) is a polynomial, then $e^{p(z)}$ is a holomorphic function.

2.6. If $u(x,y) = ax^3 + bx^2y + cxy^2 + dy^3$, with $a, b, c, d \in \mathbf{R}$, for what values of a, b, c, d is u harmonic?

2.7. Find the harmonic functions which can be written as:

a)
$$g(ax + by)$$
, $a, b \in \mathbf{R}$, b) $g(x^2 + y^2)$, c) $g(xy)$,
d) $g(x + \sqrt{x^2 + y^2})$, e) $g((x^2 + y^2)/x)$, f) $g(y/x)$,

with g a real function of class C^2 . Find in each case the holomorphic functions whose real parts are these functions.

2.8. Find a holomorphic function f on \mathbb{C} such that f(1+i) = 0, f'(0) = 0 and $\operatorname{Re} f'(z) = 3(x^2 - y^2) - 4y$.

2.9. Prove that if u and v are harmonic functions and $\alpha, \beta \in \mathbf{R}$, then $\alpha u + \beta v$ is harmonic. For what harmonic functions u is also harmonic the function u^2 ?

Hint:
$$\Delta(u^2) = 2|\nabla u|^2 + 2u\Delta u$$
.

2.10. Let U be an open connected subset of C and $f: U \longrightarrow C$ a holomorphic function. Prove the following statements:

- a) If f'(z) = 0 on U, then f is constant on U.
- b) If $\operatorname{Re} f$ is constant on U, then f is constant on U.
- c) If $\operatorname{Im} f$ is constant on U, then f is constant on U.
- d) If |f| is constant on U, then f is constant on U.
- e) If \overline{f} is holomorphic on U, then f is constant on U.

2.11. Assume that f is holomorphic on $\mathbf{D} = \{z \in \mathbf{C} : |z| < 1\}$. Study if each function g below is holomorphic on \mathbf{D} :

$$a) \ g(z) = \overline{f(z)}, \qquad b) \ g(z) = f(\overline{z}), \qquad c) \ g(z) = \overline{f(\overline{z})}, \qquad d) \ g(z) = |f(z)|, \qquad e) \ g(z) = f(z) \ f(\overline{z}).$$

Do we get the same result if we replace **D** by any domain A? And if A satisfies that $z \in A \Leftrightarrow \overline{z} \in A$?

2.12. Prove that if $h : \mathbf{R}^2 \longrightarrow \mathbf{R}$ is of class C^2 and f is holomorphic, then

$$\Delta(h \circ f) = \Delta h(f) \cdot |f'|^2.$$

2.13. Prove that $f(z) = z^2$ is holomorphic on **C** by checking that if satisfies the Cauchy-Riemann equations. If $f(z_0) = a + bi$, prove that the curves Re f(z) = a and Im f(z) = b are orthogonal at z_0 .

Hint: Prove that the inner product of the tangent vectors of the two curves is 0.

2.14. Find all the holomorphic functions which can be written as u(x) + iv(y).

2.15. a) If Q(z) is a polynomial with different roots z_1, \ldots, z_n , and if P(z) is a polynomial of degree less than n, prove that

$$\frac{P(z)}{Q(z)} = \sum_{k=1}^{n} \frac{P(z_k)}{Q'(z_k) (z - z_k)} .$$

b) Prove that there exists a unique polynomial p of degree less than n with $p(z_k) = w_k$ (Lagrange's interpolation formula).

Hints: a) P(z) and $\sum_{k=1}^{n} \frac{P(z_k)Q(z)}{Q'(z_k)(z-z_k)}$ have the same values at z_1, \ldots, z_n . b) Use the formula in the previous item.