uc3m \quad Universidad Carlos III de Madrid Departamento de Matemáticas

Complex variable and transforms. Problems Chapter 2: Transforms

Section 2.1: Fourier series

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

1 Fourier series

Problem 1.1 Given $k \geq 1$ and $a \in \mathbb{R}$, compute the Fourier series of the following functions defined on $[-L, L]$:

$$
\begin{aligned}
\text { 1. } f(x)=1, & \text { 2. } f(x)=\cos \frac{k \pi x}{L} \\
\text { 3. } f(x)=x, & \text { 4. } f(x)=x^{2} \\
\text { 5. } f(x)=e^{a x}, & \text { 6. } f(x)=x^{-2} \\
\text { 7. } f(x)=\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos x+r^{2}}, & \text { with } L=\pi \text { and } 0<r<R
\end{aligned}
$$

Problem 1.2 Given $a \in \mathbb{R}$, compute the Fourier cosine series of the following functions defined on $[0, L]$:

$$
\begin{array}{ll}
\text { 1. } f(x)=1, & \text { 2. } f(x)=e^{a x} \\
\text { 3. } f(x)=x, & \text { 4. } f(x)=x^{2}
\end{array}
$$

Problem 1.3 Given $a \in \mathbb{R}$, compute the Fourier sine series of the following functions defined on $[0, L]$:

$$
\begin{array}{ll}
\text { 1. } f(x)=1, & \text { 2. } f(x)=e^{a x} \\
\text { 3. } f(x)=x, & \text { 4. } f(x)=x^{2}
\end{array}
$$

Problem 1.4 Given $a \in \mathbb{R}$, compute the Fourier series of the following functions defined on $[-L, L]$:

$$
\begin{array}{cl}
\text { 1. } f(x)=|x|, & \text { 2. } f(x)=x|x|, \\
\text { 3. } f(x)=e^{a|x|}, & \text { 4. } f(x)=\frac{x}{|x|}
\end{array}
$$

Hint: Use the two previous problems.
Problem 1.5 Prove the equality

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Hint: Apply (FSe) to the function in (FS4).
Problem 1.6 Prove that if f is continuous, f^{\prime} is piecewise continuous on $[-L, L]$ and $f(-L)=$ $f(L)$, then

$$
a_{0}\left(f^{\prime}\right)=0, \quad a_{n}\left(f^{\prime}\right)=\frac{n \pi}{L} b_{n}(f) \quad \text { and } \quad b_{n}\left(f^{\prime}\right)=\frac{-n \pi}{L} a_{n}(f)(n \geq 1)
$$

Problem 1.7 Prove that if f and f^{\prime} are continuous, $f^{\prime \prime}$ is piecewise continuous on $[-L, L]$, $f(-L)=f(L)$, and $f^{\prime}(-L)=f^{\prime}(L)$, then

$$
a_{0}\left(f^{\prime \prime}\right)=0, \quad a_{n}\left(f^{\prime \prime}\right)=-\left(\frac{n \pi}{L}\right)^{2} a_{n}(f) \quad \text { and } \quad b_{n}\left(f^{\prime \prime}\right)=-\left(\frac{n \pi}{L}\right)^{2} b_{n}(f)(n \geq 1)
$$

Problem 1.8 (1) Find a formula for the complex Fourier coefficients c_{n} in terms of the (real) Fourier coefficients a_{n} and b_{n}.
Hint: Use the identities $\cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)$ and $\sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$.
(2) Find formulas for the (real) Fourier coefficients a_{n} and b_{n}, in terms of the complex Fourier coefficients c_{n}.
Hint: Use the previous item.
Problem 1.9 At which points x of the interval $[-L, L]$ does the Fourier series of f converge to $f(x)$?

1. $f(x)=x$,
2. $f(x)=x^{2}$.

Problem 1.10 Solve the heat equation on a rod with zero temperature at finite ends ($0 \leq x \leq$ $L, t \geq 0)$:

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)=k \frac{\partial^{2}}{\partial x^{2}} u(x, t), & \text { if } 0<x<L, t>0 \\ u(0, t)=0, \quad u(L, t)=0, & \text { if } t>0 \\ u(x, 0)=\sin \frac{2 \pi x}{L}, & \text { if } 0<x<L\end{cases}
$$

Problem 1.11 Solve the heat equation on a rod with isolated endpoints ($0 \leq x \leq L, t \geq 0$):

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)=k \frac{\partial^{2}}{\partial x^{2}} u(x, t), & \text { if } 0<x<L, t>0, \\ \frac{\partial}{\partial t} u(0, t)=0, \quad \frac{\partial}{\partial t} u(L, t)=0, & \text { if } t>0, \\ u(x, 0)=f(x), & \text { if } 0<x<L\end{cases}
$$

Problem 1.12 Solve the Laplace equation on the square $\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\pi, 0<y<\pi\right\}$:

$$
\left\{\begin{array}{l}
\Delta u=\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0, \\
u(0, y)=u(\pi, y)=0, \\
u(x, 0)=2 \sin 3 x, u(x, \pi)=0 .
\end{array}\right.
$$

Hint: Check that the function $v(y)=c_{1} e^{\mu y}+c_{2} e^{-\mu y}=k_{1} \cosh \mu(\pi-y)+k_{2} \sinh \mu(\pi-y)$ is solution of the differential equation $v^{\prime \prime}(y)-\mu^{2} v(y)=0$.

