uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Complex variable and transforms. Problems

Chapter 2: Transforms Section 2.1: Fourier series

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

1 Fourier series

Problem 1.1 Given $k \ge 1$ and $a \in \mathbb{R}$, compute the Fourier series of the following functions defined on [-L, L]:

1.
$$f(x) = 1$$
, 2. $f(x) = \cos \frac{k\pi x}{L}$,
3. $f(x) = x$, 4. $f(x) = x^2$
5. $f(x) = e^{ax}$, 6. $f(x) = x^{-2}$,
7. $f(x) = \frac{R^2 - r^2}{R^2 - 2Rr\cos x + r^2}$, with $L = \pi$ and $0 < r < R$.

Problem 1.2 Given $a \in \mathbb{R}$, compute the Fourier cosine series of the following functions defined on [0, L]: 1. f(x) = 1 2. $f(x) = e^{ax}$

1.
$$f(x) = 1$$
, **2.** $f(x) = e^{ax}$,
3. $f(x) = x$, **4.** $f(x) = x^2$.

Problem 1.3 Given $a \in \mathbb{R}$, compute the Fourier sine series of the following functions defined on [0, L]:

1.
$$f(x) = 1$$
, **2.** $f(x) = e^{ax}$,
3. $f(x) = x$, **4.** $f(x) = x^2$.

Problem 1.4 Given $a \in \mathbb{R}$, compute the Fourier series of the following functions defined on [-L, L]:

1.
$$f(x) = |x|$$
, **2.** $f(x) = x|x|$,
3. $f(x) = e^{a|x|}$, **4.** $f(x) = \frac{x}{|x|}$.

Hint: Use the two previous problems.

Problem 1.5 Prove the equality

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \; .$$

Hint: Apply (FSe) to the function in (FS4).

Problem 1.6 Prove that if f is continuous, f' is piecewise continuous on [-L, L] and f(-L) = f(L), then

$$a_0(f') = 0$$
, $a_n(f') = \frac{n\pi}{L} b_n(f)$ and $b_n(f') = \frac{-n\pi}{L} a_n(f) \ (n \ge 1)$.

Problem 1.7 Prove that if f and f' are continuous, f'' is piecewise continuous on [-L, L], f(-L) = f(L), and f'(-L) = f'(L), then

$$a_0(f'') = 0$$
, $a_n(f'') = -\left(\frac{n\pi}{L}\right)^2 a_n(f)$ and $b_n(f'') = -\left(\frac{n\pi}{L}\right)^2 b_n(f)$ $(n \ge 1)$.

Problem 1.8 (1) Find a formula for the complex Fourier coefficients c_n in terms of the (real) Fourier coefficients a_n and b_n .

Hint: Use the identities $\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$ and $\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$.

(2) Find formulas for the (real) Fourier coefficients a_n and b_n , in terms of the complex Fourier coefficients c_n .

Hint: Use the previous item.

Problem 1.9 At which points x of the interval [-L, L] does the Fourier series of f converge to f(x)?

1.
$$f(x) = x$$
, **2.** $f(x) = x^2$.

Problem 1.10 Solve the heat equation on a rod with zero temperature at finite ends $(0 \le x \le L, t \ge 0)$:

$$\begin{cases} \frac{\partial}{\partial t}u(x,t) \ = \ k \ \frac{\partial^2}{\partial x^2}u(x,t) \ , & \text{if } 0 < x < L \ , \ t > 0 \ , \\ u(0,t) \ = \ 0 \ , & u(L,t) \ = \ 0 \ , & \text{if } t > 0 \ , \\ u(x,0) \ = \ \sin \frac{2\pi x}{L} \ , & \text{if } 0 < x < L \ . \end{cases}$$

Problem 1.11 Solve the heat equation on a rod with isolated endpoints $(0 \le x \le L, t \ge 0)$:

$$\begin{cases} \frac{\partial}{\partial t}u(x,t) = k \frac{\partial^2}{\partial x^2}u(x,t), & \text{if } 0 < x < L, t > 0, \\ \frac{\partial}{\partial t}u(0,t) = 0, \quad \frac{\partial}{\partial t}u(L,t) = 0, & \text{if } t > 0, \\ u(x,0) = f(x), & \text{if } 0 < x < L. \end{cases}$$

Problem 1.12 Solve the Laplace equation on the square $\{(x, y) \in \mathbb{R}^2: 0 < x < \pi, 0 < y < \pi\}$:

$$\begin{cases} \Delta u = \frac{\partial^2}{\partial x^2} u(x, y) + \frac{\partial^2}{\partial y^2} u(x, y) = 0, \\ u(0, y) = u(\pi, y) = 0, \\ u(x, 0) = 2\sin 3x, \ u(x, \pi) = 0. \end{cases}$$

Hint: Check that the function $v(y) = c_1 e^{\mu y} + c_2 e^{-\mu y} = k_1 \cosh \mu(\pi - y) + k_2 \sinh \mu(\pi - y)$ is solution of the differential equation $v''(y) - \mu^2 v(y) = 0$.