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Complex variable and transforms.Problems

Chapter 1: Complex variable

Section 1.6: Cauchy’s integral formula
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1.6. CAUCHY’S INTEGRAL FORMULA

6.1. Compute the following integrals:

a)

∫
|z|=1

cos z

z
dz , b)

∫
|z|=1

sin z

z2
dz , c)

∫
|z|=3

ez + z

z − 2
dz ,

d)

∫
|z|=2

z2

z − 1
dz , e)

∫
|z|=2

z2 − 1

z2 + 1
dz , f)

∫
|z|=2

dz

z2 + 2z − 3
,

g)

∫
|z|=2

|z| ez

z2
dz , h)

∫
|z−1|=2

dz

z2 − 2i
, i)

∫
|z|=2

dz

z2(z2 + 16)
,

j)

∫
|z|=3/2

sinh 5z

(1 + z2)z2
dz , k)

∫
|z−z0|=r

2z − sin 2z + 2(z − z0) cos
2 z

(z − z0)
2 dz ,

l)

∫
|z−2|=1

ez

z
dz , m)

∫
|z|=1

ez

z
dz , n)

∫
|z|=1

sin z

z
dz ,

o)

∫
|z|=1

e3z

(z − 1/2)5
dz , p)

∫
|z|=2

z2

z3 − 1
dz , q)

∫
|z|=2

z2

(z − 1)3
dz ,

r)

∫
|z|=3

ezt

z2 + 1
dz , s)

∫
|z|=3

z ezt

(z + 1)3
dz .

Solutions: a) 2πi, b) 2πi, c) 2πi(2+e2), d) 2πi, e) 0, f) πi/2, g) 4πi, h)
√
2
2 πeiπ/4, i) 0, j) 2πi(5− sin 5),

k) 4πi(1 + sin2z0), l) 0, m) 2πi, n) 0, o) 27
4 πie3/2, p) 2πi, q) 2πi, r) 2πi sin t, s) πi(2t− t2) e−t.

6.2. Compute the following integral in terms of r ∈ (0, 1) ∪ (1, 2) ∪ (2,∞):

I =

∫
|z|=r

sin(πz2) + cos (πz2)

(z − 1)(z − 2)
dz .

Solution: I = 0, if 0 < r < 1; I = 2πi, if 1 < r < 2; I = 4πi, if r > 2.

6.3. Compute the following integral along the curve γ in the following cases:∫
γ

ez

z(1− z)3
dz ,

a) γ is any curve with n(γ, 0) = 1, n(γ, 1) = 0.
b) γ is any curve with n(γ, 0) = 0, n(γ, 1) = 1.
c) γ is any curve with n(γ, 0) = 1, n(γ, 1) = 1.
d) γ is any curve with n(γ, 0) = 0, n(γ, 1) = 0.

Solutions: a) 2πi, b) −eπi, c) (2− e)πi, d) 0.

6.4. a) Prove the Gauss’ mean value theorem: If f is holomorphic on a domain containing {|z − z0| ≤ r},
then

f(z0) =
1

2π

∫ 2π

0

f(z0 + reit) dt .

Hint: Use Cauchy’s integral formula along the circumference with center z0 and radius r.

b) Prove that ∫ 2π

0

cos (cos θ) cosh (sin θ) dθ = 2π .
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Hint: Apply the previous item to the function f(z) = cos z.

c) Deduce the mean value theorem for harmonic functions: If u is a harmonic function on a domain
containing {|z − z0| ≤ r}, then

u(z0) =
1

2π

∫ 2π

0

u(z0 + reit) dt .

Hint: Every harmonic function on a simply connected set D has a conjugate harmonic function on D.

6.5. a) Let f(z) be an holomorphic function on {z ∈ C : |z| < R0}. Prove that if |a| < R < R0, and
γ = {z ∈ C : |z| = R}, then

f(a) =
1

2πi

∫
γ

R2 − |a|2

(z − a)(R2 − za)
f(z) dz .

Hint: Write the rational function on z as a sum of simple fractions and apply Cauchy’s integral formula.

b) Deduce the Poisson formula for holomorphic functions (by using a)), for 0 ≤ r < R and 0 ≤ θ < 2π:

f(reiθ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
f(Reiφ) dφ .

Hint: Consider a = reiθ and z = Reiφ.

c) Deduce the Poisson formula for harmonic functions u on {z ∈ C : |z| < R0} (by using b)) for
0 ≤ r < R and 0 ≤ θ < 2π:

u(reiθ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos (θ − φ) + r2
u(Reiφ) dφ .

Hint: Every harmonic function on a simply connected set D has a conjugate harmonic function on D.

6.6. a) Assume that γ, γ1, γ2, . . . , γn are simple closed curves such that γ1, γ2, . . . , γn are contained in the
interior of γ. If f is an holomorphic function on the closure of the region Ω with ∂Ω = ∪n

k=1γk ∪ γ, prove
that: ∫

γ

f(z) dz =

n∑
k=1

∫
γk

f(z) dz .

Hint: Add some paths to the integral in order to write Ω as a union of simply connected domains.

b) Under the hypotheses in the previous item, prove the following Cauchy’s formula, for every a ∈ Ω:∫
γ

f(z) dz

z − a
−

n∑
k=1

∫
γk

f(z) dz

z − a
= 2πi f(a) .

Hint: Use the previous item with the function (f(z)− f(a))/(z − a).

c) Let f be an holomorphic function on {z ∈ C : 0 < |z| < R}. Prove that the value of
∫ 2π

0
f(reit)dt,

with 0 < r < R, is independent of r. If f is holomorphic on the whole disk, compute the value of
∫ 2π

0
f(reit)dt.

Hint: Use item a).

6.7. Prove Liouville’s theorem: If f is an entire function (i.e., holomorphic on C) satisfying |f(z)| ≤ M ,
for every z ∈ C, then f is constant.

Hint: Prove:

a) |f ′(a)| ≤ M/r2 for every a ∈ C.

Hint: Use the Cauchy’s inequality for f ′.

b) f ′(a) = 0 for every a ∈ C.
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Hint: Take the limit in the inequality of item a) as r goes to some appropriate value.

6.8. Prove the Fundamental Theorem of Algebra: Every polynomial (with complex coefficients) of degree
n ≥ 1 has n complex zeros (taking into account the multiplicity of its zeros ).

Hint: It suffices to prove that the polynomial P has a zero. Seeking for a contradiction assume that
P ̸= 0 and apply Liouville’s theorem to the function 1/P .

6.9. Let f be an entire function. Prove the following statements by using Liouville’s theorem:
a) If |f | ≥ 1, then f is constant.
b) If Re f ≥ 0, then f is constant.
c) If Im f ≤ 1, then f is constant.
d) If Re f does not have zeros, then f is constant.
e) If there exists an straight line that does not intersect the image of f , then f is constant.

Hint: Find a bounded entire function in terms of f .

6.10. Prove that the following functions are entire if they are defined in an appropriate way at their singular
points:

a)
sin z

z
, b)

ez − 1− z

z2
, c)

sin(πz)

z3 − z
, d)

sin(πz2)

sin(πz)
.

Hint: Prove that limz→a(z − a)f(z) = 0 at each singular point a.

6.11. Prove that F (z) =
∫ 1

0
e−z2x2

dx is an entire function, and compute F ′(z).

Hint: For the first statement you can use Morera’s theorem. For the second one, prove that you can
compute the derivative inside the integral.

6.12. If f : [0,∞) −→ C is a function with limx→∞ f(x) e−ax = 0 for some a ∈ R and f ∈ L1([0, n]) for
every n, then the Laplace transform of f is defined as

Lf(z) =

∫ ∞

0

f(x) e−zx dx.

Prove that f(x) e−zx is integrable on [0,∞) for each complex number z with Re z > a and that Lf is
holomorphic on the halfplane {z ∈ C : Re z > a}. Prove that the properties of the Laplace transform as a
function of a real variable also hold for the Laplace transform as a function of a complex variable.

Hint: For the first statement you can use Morera’s theorem.

6.13. It can be proved that if f is a “good enough” function, then we can obtain f from its Laplace
transform by the following Mellin’s inverse formula:

f(x) = lim
T→∞

1

2πi

∫
γt,T

ezx (Lf)(z) dz ,

where if lims→∞ f(s) e−as = 0, then γt,T is the vertical segment γt,T = {z ∈ C : Re z = t, Im z ∈ [−T, T ]}
oriented starting at t− iT and ending at t+ iT , with t > a. Alternatively, we can choose t greater than the
real part of all singularities of F (z).

Compute f(x) if:

(Lf)(z) =
1

z − 3
, (Lf)(z) =

z

(z − 1)2(z2 + 3z − 10)
, (Lf)(z) =

1

z2(z2 + 2z + 2)
,

and check that its value is independent on the choice of t > a.
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Hint: Apply Cauchy’s integral formula for an appropriate closed curve containing γt,T and a part of
circumference CT joining the endpoints of γt,T . Prove that the integral along CT goes to 0 as T goes to ∞.

6.14. Let f be an holomorphic function on a simply connected domain D, such that f(z) ̸= 0 for every
z ∈ D.

a) Prove that for any z0 ∈ D, the function L(z) =
∫ z

z0
f ′(w)/f(w) dw is well defined (i.e., the value of

L(z) is independent of the curve joining z0 with z) and so, it is possible to define the function log f(z) in
such a way that it is holomorphic on D.

b) Prove that for any α ∈ C, it is possible to define the function f(z)α in such a way that it is
holomorphic on D.

c) Do items a) or b) hold in general if D is not simply connected?
d) Find a domain D such that (1− z2)−1/2 can be defined as a holomorphic function on D. Is arcsin z

holomorphic on that domain?
e) Find a domain D such that arctan z can be defined as a holomorphic function on D.

Hints: a) Use that
∫ z

γ
f ′(w)/f(w) dw = 0 for any closed curve γ in D. b) Use the previous item.

6.15. Let f be a meromorphic function on a domain D (i.e., a holomorphic function on D except for a set
of isolated points, which are poles of f).

a) Prove that if f has a zero of order k at a, then the function

f ′(z)

f(z)
− k

z − a

is holomorphic on a neighborhood of a.
b) Prove that if f has a pole of order k at a, the function

f ′(z)

f(z)
+

k

z − a

is holomorphic on a neighborhood of a.

Hints: a) If f has a zero of order k at a, then f(z) = (z − a)kg(z) where g is a holomorphic function
on a neighborhood of a with g(a) ̸= 0. b) If f has a pole of order k at a, then f(z) = g(z)/(z − a)k where
g is a holomorphic function on a neighborhood of a with g(a) ̸= 0.

6.16. a) Let f be a meromorphic function on a simply connected domain D with zeros a1, a2, . . . , ar and
poles b1, b2, . . . , bs (in each list appear the zeros and the poles taking into account their multiplicities, i.e., if
a zero or a pole has order k, it appears k times in the list). Prove that if γ is a closed curve contained on D
with γ ∩ {a1, a2, . . . , ar, b1, b2, . . . , bs} = ∅, and Γ = f ◦ γ is the image of γ by f , then

1

2πi

∫
Γ

dw

w
=

1

2πi

∫
γ

f ′(z)

f(z)
dz =

r∑
j=1

n(γ, aj)−
s∑

k=1

n(γ, bk) .

This result is known as the argument principle. In particular, if γ is a Jordan curve in D enclosing a simply
connected domain Dγ ⊂ D, the argument principle gives that the above integral is equal to the number of
zeros of f on Dγ minus the number of poles of f on Dγ (taking into account their multiplicities).

Hint: In order to prove the first equality, note that if γ(t) is a parametrization of γ, then f(γ(t)) is
a parametrization of Γ. In order to prove the second equality, use the previous exercise to show that the
following function is holomorphic on the domain D

f ′(z)

f(z)
−

r∑
j=1

1

z − aj
+

s∑
k=1

1

z − bk
.

b) Use the previous item to compute

i)

∫
|z|=2

tan z dz , ii)

∫
|z|=2

dz

sin z cos z
.

Hints: i) Consider the function f(z) = cos z. ii) Consider the function f(z) = cosec 2z + cotan 2z.
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Solutions: i) 2πi, ii) −2πi.

6.17. Let f, g be two holomorphic functions on a domainD, and γ a Jordan curve (i.e., a simple closed curve)
in D surrounding a simply connected domain Dγ ⊂ D. If f, g satisfy the inequality |f(z) − g(z)| < |f(z)|
for every z ∈ γ, prove that:

a) The function F = g/f does not have zeros nor poles in the curve γ, i.e., f and g do not have zeros
in γ.

b) If Γ is the image by F of γ, then
∫
Γ
dw/w = 0.

Hint: Since |g(z)/f(z)− 1| < 1 on γ, we have |w − 1| < 1 on Γ.
c) Prove that f(z) and g(z) have the same number of zeros on Dγ (taking into account their multiplic-

ities). This result is known as Rouché’s theorem.
Hint: Use the argument principle.

6.18. Apply Rouché’s theorem in order to solve the following problems:
a) How many roots does the equation z7 − 2z5 + 6z3 − z + 1 = 0 have in the unit disk D = {|z| < 1}?
Hint: Consider g(z) = z7 − 2z5 + 6z3 − z + 1 and choose f(z) as the monomial of g(z) with greatest

modulus on {|z| = 1}.
b) How many roots does the equation z7 − 2z5 + 6z3 − z + 1 = 0 have in the disk {|z| < 2}?
c) How many roots does the equations z9 − 2z6 + z2 − 8z − 2 = 0, 2z5 − z3 + 3z2 − z + 8 = 0,

z7 − 5z4 + z2 − 2 = 0, have in D?
d) How many roots does the equation z4 − 6z + 3 = 0 have in the disk {|z| < 2}? And in D? And in

the annulus {1 < |z| < 2}?
e) How many roots does the equation z4 − 5z + 1 = 0 have in D? And in the annulus {1 < |z| < 2}?
f) How many roots does the equation z4 − 8z + 10 = 0 have in D? And in the annulus {1 < |z| < 3}?
g) How many roots does the equation zn + az2 + bz+ c = 0 have in D, if |a| > |b|+ |c|+1 and n ∈ N?
h) How many roots does the equation z = f(z) have in D, if f is an holomorphic function satisfying

|f(z)| < 1 if |z| ≤ 1?
i) How many roots does the equation ez − 4zn + 1 = 0 have in D, if n ∈ N?

Solutions: a) 3, b) 7, c) 1, 0, 4, d) 4, 1, 3, e) 1, 3, f) 0, 4, g) 2, h) 1, i) n.

6.19. Let f be an holomorphic function on D satisfying |f(z)| < 1 for every z ∈ D and f(0) = 0. Prove
that:

a) The function g(z) = f(z)/z is holomorphic on D.
b) For each 0 < r < 1 we have |g(z)| ≤ 1/r if |z| ≤ r.
Hint: Use the maximum modulus principle.
c) |f(z)| ≤ |z| for every z ∈ D and |f ′(0)| ≤ 1.
Hint: Use the previous item.
d) If there exists a point z0 ∈ D such that |f(z0)| = |z0| (or |f ′(0)| = 1), then f(z) = cz where c is a

complex number with |c| = 1.
Hint: Use the maximum modulus principle.
These results are known as Schwarz Lemma.

6.20. Prove the minimum modulus principle: If f(z) is an holomorphic function on the domain D, f(z) ̸= 0
for every z ∈ D, and |f(z)| attains its minimum value at a point in D, then f(z) is constant.

Hint: Use the maximum modulus principle for an appropriate holomorphic function.

6.21. Study if there exists an holomorphic function on D such that on the points 1/n (n = 1, 2, 3, . . . )
take the values:

a) 0, 1, 0, 1, 0, 1, . . .
b) 0, 1/2, 0, 1/4, 0, 1/6, . . . , 0, 1/(2k), . . .
c) 1/2, 1/2, 1/4, 1/4, 1/6, 1/6, . . . , 1/(2k), 1/(2k), . . .
d) 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, . . . , n/(n+ 1), . . .
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Hint: Recall that f = 0 is the unique holomorphic function on D such that f(an) = 0 for a sequence
with limn→∞ an = 0.
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