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2 Fourier transform

Problem 2.1 Prove that if f € L*(R) and f > 0, then |f(w)| < f(0) for every w # 0.

Hint: The inequality | f(w)] < f(0) is easy. If a denotes the complex argument of f(w), then
If(w)] = f(w)e i = %r [ f z)e'@r=0)dz. Now, take real parts in the equality |f(w)| = f(0
to conclude that, a fortiori, w = 0.

Problem 2.2 Given a > 0, compute the Fourier transform of the following functions, if we
define the function x, , () by

0, if x ¢ [a,b
1) fla) = el 2) f(r) = 2y
3) f($) = X[_a,a] (x 5 4) f(ZL‘) wX[_a,a] (.7}) 5
5) J(@) = X0 (%) = X _0g (@), 6) f(z)=lzlx_,. (),
7 flx) =3, 8) flz) =27,
9) f(z)=(a—|z]) Xi=aa] ? 10) f(z) = (x,x52+a2 + (@+z0)2+a2
11) f(z) = (x_x(32+a2 - (z+m00;2+a2 ) 12) f(z) = (x2+a2)1(x2+52) )

Solution: 1) Applying directly the definition of the Fourier transform we obtain

1 [ : 1 [ : 10 :
f-[e—a\ad] (w) _ / e—a\z|€zwxdx = e LWL 0 | T VT ..
—00

2 2 Jo 2 J_
1 [ 1 [0
- e(zw—a)mdl, + / e(zw—l—a)xdx
2 Jq 2 J_ o
1 /reliw—a)zp=co eliw+a)z 1 z=0 1 -1 1
o=l sl wla= o)
27\l tw — a lz=0 w+ a le=—co 2r \iw —a w+ «
«
(w2 +a?)

2) Using the previous problem, we have:

(67

Flmra)@=" = P imrs

w? + a?)

}(w) = el
Taking this result into account and using the theorem on the inverse Fourier transform, we get

]:[720( }(w) = i.7:71 [720[ ](—w) =F! {771_( < )} (—w) = el = gmalwl,

2 4+ o2 o z2 4+ a? z2 4+ a?

3) Applying the definition of the Fourier transform we obtain

1 - W 1 “ WT
F[X[—a,a] (;U)] (w) / X[—a,a] (1‘) e d[]}' = — e dx

27 J_ 2 J_,
1 [e“"x} r=o e — e ginaw
27 L iw Ja=—a 27miw Tw

1



4) As F [X[—a,a] (2)](w) = 22¢ by the previous problem and the property 7 of the Fourier
transform, we conclude that

. d . d /sinaw . Sin aw — aw cos aw
FlaX 0 @)](@) = =i = (F @] @) = =i = (F7) = — -
5) Applying the definition of the Fourier transform we obtain
1 0 )
F X0, () = XLy ()] (w) = 27r/ (X0, (%) = XL (@) €%l
—00
= 1 " e dy — 1 ’ ™ dy:
27 Jo 2 J_,
1 eiwx r=a 1 eiwx =0 eiaw —1—-14+ e—iozw
_%[ L:O_%[ i|z:—o¢_ 2miw
iy 1 — cosaw
N W '

6) As .7-'[)([070] (T) = X(_ag) ()] (w) = i =559 Ly the previous problem and

|x’X[_a7a] (.%') = x(X[o,a] ($) - X[_am (x)) ’
the property 7 of the Fourier transform we conclude that

f[’$|X[_a,a] (:E)] (w) = f[x (X[o,a] ($) ~ Xi—a,0] (x))] (w)
= i (F @)~ X @] @) =

aw sin aw + cosaw — 1
5 )

1 — cos aw)
W

w
7 —i/2ifw<0,0ifw=0,i/2if w>0.8) %X[—a,a] (w). 9) 1;"% 10) =l cos zgw.
11) e~ %l sin zgw. 12) W(ae_mw' - 56_04‘”').
Problem 2.3 Let f € L'(R) and a € R. Prove the following formulas:
<1> Fleio f ()] <w> ~ Flfw+a.
flz—« ] = e F[f](w).

F

Flf(az)] (w ﬁﬂf](z)-

[7] = m.

[f ] m, if f just take real values.

Hints: (2) Consider a change of variable. (3) Consider a change of variable. (4) [*_ f(x)dz =
f f(z) dz and et = =" for t € R. (5) Use the previous item.

Problem 2.4 Compute the Fourier transform of the Gaussian function f(z) = e *’.

Hint: Recall that fR e dy = /7. Assume that w > 0 (the case w < 0 can be obtained from
the case w > 0, by using the previous problem). Consider the integral of f(z) = e along the
closed curve which is the union of the segment from —R to R, the segment from —R — iw/2 to
R —iw/2, and the two vertical segments joining —R and —R —iw/2, and R and R —iw/2, which
is 0 by Cauchy integral theorem. After that, take the limit as R — oo.

Solution: f(w) = \/% e~w*/4,



Problem 2.5 Compute the Fourier transform of the function f(z) = eiz?,

Hint: Prove first that fR e~ dy = ﬁe_”/ 4. In order to prove this formula, consider the

integral of f(z) = i7" along the closed curve which is the union of the segment from R to 0,
the segment from 0 to Re~™/4 and the arc of the circumference of radius R from Re~ /% to R,
which is 0 by Cauchy integral theorem. After that, take the limit as R — oo.

Solution: f(w) = \/% e—im/4gi? /4
Problem 2.6 Compute the Fourier transform of the function f(x) = \/g e—im/4 giz?/(4a)

Hint: Compute first the Fourier transform of the function g(z) = ei"’”Q, by using the previous
problem.
2

Solution: f(w) = e~10«”
Problem 2.7 For a > 0, compute the integral
00 Lin2

/ sin Qaa; da
o T

Hint: Use Plancherel’s theorem and part 8) of Exercise 2.2.
Solution: Applying Plancherel’s theorem and part 8) of Exercise 2.2 we obtain that

«

/OO (Sinxa$>2dx - QW/OO (% Xi-aa) (W)>2dw = ;T/ dw = am.

—0o0 —00 —Q

Problem 2.8 Find a particular solution of the equation v’ —u = f(x) by taking Fourier
transforms in both sides of the equation.

Solution: Taking Fourier transforms in both members of the equation u” — u = f(z) we obtain
that )
= wz—i—l}—[ﬂ(w)'

As we know by the part 1) of Exercise 2.2 that F[e~l*I](w) = 1/(m(w? + 1)), we deduce using
the property 6 on the Fourier transform of a convolution, that

f[u] (w) = —7[']:[67‘:”] (w) ]:[f] (w) = —Wf[ef‘xl * f] (w),

ua) = —rle e o) = 5 [ ) ay.

—wQF[u] (w) — ]:[u] (w) = ]:[f] (w) = f[u] (w)

Problem 2.9 Find a solution of the initial value problem for the heat equation in R x (0, c0)
by taking Fourier transforms in the z-variable in both members of the equations:

Ox2

%u(w,t) = ka—Qu(x,t), ifreR,t>0,
u(z,0) = f(x), if x eR.

Solution: Let us denote by U(w,t) and F(w) the Fourier transforms in the variable z of the
functions u(z,t) and f(x), respectively. Applying the Fourier transform in the variable z to
both members of the equations, we obtain

(o0 - i
U(w,0) = F(w).



For each fixed w, we can see the equation %U (w,t) = —kw?U(w,t) as an ordinary differential
equation. The general solution of this equation is U(w,t) = Ae*k‘“zt, where A is a constant
(with respect to the variable ¢, and so A can depend on the variable w). Substituting the initial
condition U(w,0) = F(w) we obtain that A = F(w) and so U(w,t) = F(w) e *". If we define
the function K;(z) through the following formula, using the result of Exercise 2.4 it is easy to

obtain that:
T

Kt(x) = T €7x2/(4kt)’ —F[Kt] (W) = efkoﬂt_

Then, using the property on the Fourier transform of a convolution:
Flu](w) = F[K](w) F[f](w) = F[Kq f]( ),

u(z,t) = (K = f) () SIERD f () dy .

= e )

Problem 2.10 Find a solution of the initial value problem for the diffusion equation with
convection:

(2,0) = f(z if v €R.

Solution: We denote by U(w,t) and F(w) the Fourier transforms in the variable z of the functions
u(x,t) and f(x), respectively. Applying the Fourier transform in the variable x to both members
of the equations, we obtain

{at u(z,t) :kaa— (x,t)+c 8Bu(x,t), ifreR,t>0,
)

{gtU(w ) = —kw?U(w,t) —icwU(w,t),
U(w,0) = F(w).

For each fixed w, we have the differential equation %U(w,t) = —(kw? + icw)U(w,t), whose
general solution is U(w,t) = A e~ ki)t where A is a constant (with respect to the variable
t, and so A can depend on the variable w). Substituting the initial condition U(w,0) = F(w)
we obtain that A = F(w) and so U(w,t) = F(w)e **te=i If we define the function K(z)
through the following expression (as in the previous problem), using the result of Exercise 2.4
it is easy to obtain that:

7T
Kt(ﬂf) = ﬁ G_IQ/(4kt)’ f[Kt] (W) — G_kat.

—szte—ictw

Hence, using the property 3 of the Fourier transform, we obtain F [Kt(a:—i—ct)] (w) =e
Finally, using the property on the Fourier transform of a convolution, we get

.F[u] (w) = f[Kt(x + ct)] (w) f[f] (w) = ]-'[Kt(x + ct) * f] (w),

u(a,t) = (Ky(a + ct) = f)(2)

1 > —(x+-ct—
= T | T f) dy.

Problem 2.11 Find a solution of the initial value problem for the diffusion equation with
convection:

2

( t) = 82u(gu t) — 2%u(m,t), ifreR,t>0,
(w 0) = e ™, ifxeR.



Solution: Using the previous problem we know that

—(z—2t)2/(4
() 2040 gy — C [ g aGnuan g,
\/47r Virt S
As

x —2t (x —2t)2 (- 2t)?
T4t T @rang (1+4t)2)
r—2t\2 (z—2t)?
1+4t> o144t

We have with the change of variables v = y — (z — 2t)/(1 + 4t) and w = v\/1 + 4t/\/4t, and
using again the Exercise 2.4 that

(1+4t)y? — 2(z — 2)y = (1 + 4¢) (y2 9

= (1+4t)(y -

—(x— 2 o0
t) = M *(1+4t)(y*(I*Qt)/(1+4t))2/(4t) (z—2)?/(4t(1+41)) 4
u(w,t) VAt ’ e y
S
_ e dv
Vimt —o0
I i R N U

e w =
VAart —o V144t V144t

Problem 2.12 Find a solution of the initial value problem for the diffusion equation with
absorption:

at u(z, t)—k‘92u(x t) —cu(z,t), ifreR,t>0,

u(z,0) = f(z), ifzeR.

Solution: We denote by U(w,t) and F(w) the Fourier transforms in the variable z of the functions
u(x,t) and f(x), respectively. Applying the Fourier transform in the variable x to both members
of the equations, we obtain

aatU(w t) = —kw?U(w,t) — cU(w,t),
U(w,0) = F(w).

—(kw?+¢)U(w, t), whose
general solution is U(w,t) = Ae_(k‘”2+c)t, where A is a constant (with respect to the variable
t, and so A can depend on the variable w). Substituting the initial condition U(w,0) = F(w)
we obtain that A = F(w) and so U(w,t) = e % F(w) e *". If we define the function K;(z)
through the following expression, as in the previous problems, using the result of Exercise 2.4 it
is easy to obtain that:

For each fixed w, we have the ordinary differential equation% U(w,t)

™
Kt(x) — ﬁ 6—m2/(4kt)’ .F[Kt] (w) — e_ku;?t.

Then using the property on the Fourier transform of a convolution, we deduce that
f[u] (w) = e_Ct]:[Kt]( )f[f] (w) = e_Ct]:[Kt * f] (w),

u(z,t) = e (K + f)() (@=9)*/4R) £ () dy

\/ Akt



Problem 2.13 Find a solution of the initial value problem for the wave equation on R x R

81t2u( t) = ¢ 86—2 (x,t), fzeR,teR,
(:BO): f(z), if x eRR,
(xO) g(x), ifreR.

Solution: Let us denote by U(w,t), F(w) and G(w) the Fourier transforms in the variable x of
the functions u(z,t), f(x) and g(z), respectively. Applying the Fourier transform in the variable
x to both members of the equations, we obtain that

u (w 0) = F(w),

g—;U(w t) = —c2w?U(w,t),
5iU(w,0) = G(w).

For each fixed w, we have the ordinary differential equation g—;U (w,t) = —c?w?U(w,t), whose
general solution is U(w,t) = Acos(cwt) + Bsin(cwt), where A and B are constants (with
respect to the variable ¢, and so A and B can depend on the variable w). Substituting the initial
conditions U(w,0) = F(w) and %U(w, 0) = G(w) we obtain that A = F(w) and B = G(w)/(cw);
Hence, U(w,t) = F(w) cos(cwt) + G(w) w

If we define the function E¢(z) through the following expression, the part 3 of Exercise 2.2 gives:

™

Ey(r) = o Xiceten (x), FlE(2)](w) = sin(cwt) '

cWw

From this last equality and property 9 of the Fourier transform we deduce

OE; 0 0 /sin(cw
) = g (FIEI ) = (T

Then, using the linearity of the Fourier transform and the property on the Fourier transform of
a convolution, we get

.7:[ o ) = cos(cwt) .

Flul @) = F[ 2] @) F[1) @) + F[B (@) Flol () = F[ O s f 4 By e g ),
u(e,) = (22w ) (@) + (B x 0) (@) = o (B 1) (@) + (Bv ) (@),
As
(Et*g)(x)—;rf_zg(w—y):X[_ct,ct](y)dy—zlc _C;g(x—y)dy—zlc ::tg(S)ds,
(Be o=y [ 161, (s =) (o +a) + 1o - en)

we obtain that
x+ct

u(z, t) = ;(f(x—l—ct)+f(:n—ct)) + 216/ o(s) ds.

—ct

This expression is known as D’Alembert’s formula.




Problem 2.14 Prove that the function you have found in the previous exercise

x+ct
(F(e+ct) + fa—ct)) + 1/ o(s) ds

2c —ct

N | =

u(x,t) =

is, in fact, a solution of the wave equation on R x R if f is of C%-class (continuous with two
continuous derivatives) on R and g is of C'-class (continuous with one continuous derivative)
on R.

Solution: As f belongs to the class C? and g to the class C', we have that

gZ(a;, t) = % (f'(z+ct)+ fl(z — b)) + % (9(z +ct) — g(z —ct)) ,
gig(:r, t) = % (f"(x+ct)+ f'(x—ct)) + 2% (¢'(@+ct) =g (z—ct)),
%(aj,t) - g (f'(x +ct) — f'(z — ct)) + % (g(x + ct) + g(a — ct))
(;3(% t) = 022 (f"(@+ct) + f'(x —ct)) + g (¢'(x+ct) = g'(z—ct)),
and so,
aa?;(x,t) = 022112‘(3:,75)

Substituting ¢t = 0 in u(z,t) and %u(:ﬂ, t) we get

u(w0) = 3 (1) + F@) + 5 [ o) ds = fia),
O 0,00 = £ (')~ /@) + 5 (90) + 9(2) = o).

Hence, D’Alembert’s formula provides a solution of the initial value problem for the wave equa-
tion on R x (0, 00).

Problem 2.15 Find a solution of the initial value problem for the non-homogeneous wave
equation in R x R:

a—zgua;,t :8—22u1:,t +6, ifreR,teR,
ot

oz
u(r,0) = 22, ifzxeR,
%u(l’,O)ZZL’E, ifz eR.

Hint: Prove that if u(x,t) is solution of this problem, then the function v(z,t) = u(z,t) — 3t
satisfies

2 2 .
%v(x,t): %v(x,t), fzeR,teR,
v(z,0) = 22, ifxeR,
%v(w,O):le, ifzeR.
Solution: Tt is easy to check that ug(z,t) = 3t? is a particular solution of the non-homogeneous
equation g—;u(x,t) = dngu(;v,t) + 6, since g—;u(x,t) =6 and %u(az,t} =0.



It is also easy to see that the function v defined as v(w,t) = u(z,t) — ug(x,t) = u(w,t) — 3t? is
a solution of the initial value problem for the homogeneous wave equation:

gtzv(x t) = 88127)(:10 t), ifreR,t>0,
(ac O)fu(m 0) — up(x,0) = 22, if r e R,

(ac 0) = at u(z,0) — atuo(ac 0) = 4x, ifreR,

since

9%u 9%u
0%v 0%ug 0% 0%ug
= @W%ﬂ*‘ﬁ(%ﬂ—@(f t) + Il (z,t) +6
2, o%v 9% 8211

Hence, D’Alembert’s formula (see the previous exercise) gives

x+t
o, 1) = (f(w+t)+f(w—t))+1/ o(s) ds

2 —t
T+t

((z+1t)* —l—(x—t)z)—i-;/ 45 ds

r—t

l\:}\r—‘ M\H

s=x+t
s=x—t

:x2+t2+[52] =2 +t? + 4at.
Then our solution u is

w(z,t) = v(x,t) +uo(z,t) = 22 + 4% 4+ 4ot = (z + 2t)%.



FOURIER TRANSFORMS TABLE

Fle ] (w) = \/41?@6 /(4a)
f[\/ze_x2/(4a)](w) _ ot
P = oy
F:x22+aa2}(“’) = e ol

FX @] @) = 222
fﬁ%:kazzéwiJw%

Flox @) () = i 02— 000mas,
F X0 () = X oy (@] (@) = ;L _:;S aw

FllzX g (@)](w) =

ow sin aw + cos aw — 1

2 ;

Tw
1 — cos aw sin?(aw/2)
}-[(04 N ‘$|) —eel (x)]( ) = Tw? B w2
. 2 1

Fle @™ (w 6—7,71'/4 W /(401)’

) = e
f'_\/? e—lﬂ'/4 a2 } _ —law2

L (8% Y

_ a o —|Ww
f‘($_x0)2+042 ($+$0)2+Q2:|(w) =e | |COS$OW7

_ a & - —alw| s
]:-(CL’ —z0)2+a?  (z+w0)2+ 042:| () = e~ M sinaow,

i 1 .

e — 75“‘-" _ *Ol|w|
}—-(932 + a?)(z? + B?) () 2a3(a2 — 3?) (e Be ),
—i/2, if w<O,

rl
a z (w) =10, if w=0, (it’s understood as the principal value).

_ i/2, if w>0,



