Universidad Carlos III de Madrid Departamento de Matemáticas

Complex variable and transforms. Problems

Chapter 1: Complex variable

Section 1.5: Complex integration

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

1.5. COMPLEX INTEGRATION

- **5.1.** Compute the following integrals:
 - a) $\int x dz$, where γ is the segment joining 0 with 1 + i.
 - b) $\int x dz$, where γ is the circumference with radius r centered at 0.
 - c) $\int \frac{dz}{z}$, with $\gamma(t) = \cos t + 2i \sin t$, $t \in [0, 2\pi]$.
 - d) $\int \frac{dz}{z^2}$, with $\gamma(t) = \cos t + 2i \sin t$, $t \in [0, 2\pi]$.
 - e) $\int \frac{dz}{z^2 1}$, with $\gamma(t) = 1 + e^{it}$, $t \in [0, 2\pi]$.
 - f) $\int |z| \, \overline{z} \, dz$, where γ is the boundary of the half-disk $\{z \in \mathbf{C} : |z| \le 1, \text{Im } z \ge 0\}$.
- g) $\int_{\mathbb{R}} |z-1| |dz|$, where γ is the unit circumference (the boundary of the disk with radius 1 centered at
 - h) $\int_{\Omega} |z|^2 dz$, where γ is the square with vertices (0,0), (1,0), (1,1) and (0,1).
 - i) $\int \frac{|z|}{|1-z|^2} |dz|$, where γ is the circumference with radius r (0 < r < 1) centered at 0.
 - j) $\int_{\gamma} \frac{dz}{|z-a|^2}$, where γ is the circumference with radius r centered at 0, and $a \in \mathbf{C}$ with $|a| \neq r$.

Hints: i) prove first that if $0 \le r < R$, then

$$\frac{1}{R^2 - 2rR\cos t + r^2} = \frac{1}{R^2 - r^2} \left(1 + 2\sum_{n=1}^{\infty} \left(\frac{r}{R} \right)^n \cos nt \right).$$

j) Recall that

$$|z-a|^2 = (z-a)(\bar{z}-\bar{a}) = (z-a)(r^2/z-\bar{a}).$$

- **5.2.** Compute $\int_{-\infty}^{\infty} \overline{z} dz$, if γ is:
 - a) $\gamma(t) = t^2 + it$, with $0 \le t \le 2$,
 - b) the polygonal joining the points 0 with 2i, and 2i with 4 + 2i.

Can an holomorphic function exist with derivative \overline{z} ?

Solutions: a) 10 - 8i/3. b) 10 - 8i. No.

- **5.3.** Compute $\int_{\gamma} \frac{dz}{\overline{z}^2}$, if γ is:
 - a) $\gamma(t)=e^{i(\pi-t)}$, with $0\leq t\leq \pi$, b) $\gamma(t)=e^{it}$, with $\pi\leq t\leq 2\pi$.

Do the answers of a) and b) imply that there exists an holomorphic function f with $f'(z) = 1/\overline{z}^2$? Solutions: a) 2/3. b) 2/3. No.

5.4. a) Compute for each $n \in \mathbb{Z}$ and $a \in \mathbb{C}$ the integral:

$$I = \int_{\gamma} (z - a)^n \, dz,$$

where γ is any circumference with $a \notin \gamma$.

- b) Prove that there is no holomorphic function f on $\mathbb{C}\setminus\{0\}$ such that f'(z)=1/z.
- c) If $\gamma = \{z \in \mathbb{C} : |z| = 2\}$, compute the following integral (by using the index):

$$\int_{\gamma} \frac{dz}{z^2 - 1} \; .$$

d) If $\gamma = \{z \in \mathbb{C} : |z| = 3\}$, compute the following integral:

$$\int_{\gamma} \frac{2z^2 - 15z + 30}{z^3 - 10z^2 + 32z - 32} \, dz.$$

Solutions: a) $I = 2\pi i$ if n = -1 and a is in the interior of the circumference, and I = 0 otherwise; c) 0;

5.5. a) If $f:[a,b] \longrightarrow \mathbf{C}$ is an integrable function, prove that:

$$\left| \int_{a}^{b} f(t) dt \right| \leq \int_{a}^{b} |f(t)| dt$$

Hint: If $\int_a^b f(t) dt = R e^{i\alpha}$, then $R = \int_a^b \text{Re} \left(e^{-i\alpha} f(t) \right) dt$. b) Let $D \subset \mathbf{C}$ be an open set, $f: D \longrightarrow \mathbf{C}$ a continuous function and γ a curve contained on D. Prove

$$\left| \int_{\gamma} f(z) dz \right| \le \int_{\gamma} |f(z)| |dz|.$$

c) With the hypotheses in the previous item, prove that

$$\left| \int_{\gamma} f(z) \, dz \right| \le M \operatorname{length} \gamma \,,$$

if $|f(z)| \leq M$ on γ .

d) Prove that if $\gamma(t) = e^{it}$ with $t \in [0, \pi]$, we have

$$\Big| \int_{\gamma} \frac{e^z}{z} \ dz \Big| \le \pi \, e \, .$$

e) Prove that if γ is the unit circumference positively oriented, we have

$$\left| \int_{\mathcal{Z}} \frac{\sin z}{z^2} \, dz \right| \le 2\pi \, e \, .$$

It would have the same inequality if γ were oriented in the opposite direction? Solution: e) Yes.

5.6. a) If $f_n \to f$ uniformly on $\gamma([a,b])$, prove that $\int_{\mathbb{R}^n} f_n \to \int_{\mathbb{R}^n} f$ as $n \to \infty$.

Hint: Use item c) in the previous exercise.

b) Consider the curves $\gamma:[0,2\pi]\longrightarrow \mathbf{C}$ with $\gamma(t)=re^{it}$ and $\gamma_n:[0,2\pi]\longrightarrow \mathbf{C}$ with $\gamma_n(t)=$ $(1-1/n)re^{it}$. If f is a continuous function on the closed disk centered at 0 with radius r, prove that:

$$\int_{\gamma} f(z) dz = \lim_{n \to \infty} \int_{\gamma_n} f(z) dz.$$

Hint: You can use item a).