COMPLEX VARIABLE AND TRANSFORMS

Problem 1 (1) Compute the Fourier series of the function $f(x)=x$ defined on $[-L, L]$. (2) At which points x of the interval $[-L, L]$ does the Fourier series of f converge to $f(x)$?.
(3) Compute the Fourier sine series of the function $f(x)=x$ defined on $[0, L]$.

Problem 2 Find a solution of the initial value problem for the diffusion equation with absorption:

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)=k \frac{\partial^{2}}{\partial x^{2}} u(x, t)-c u(x, t), & \text { if } x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), & \text { if } x \in \mathbb{R}\end{cases}
$$

Problem 3 Find a function satisfying $f(0)=1$ and

$$
f^{\prime}(x)=1-\int_{0}^{x} f(x-s) e^{-2 s} d s
$$

by using the Laplace transform.

Problem 4 Solve the following difference equation by using the Z-transform,

$$
f_{n+2}-f_{n+1}-2 f_{n}=0, \quad \text { with } \quad f_{0}=0, f_{1}=1
$$

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

