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Introduction

• SLAM asks the following question:

“Is it possible for an autonomous vehicle to start in an unknown location in an unknown

environment and then to incrementally build a map of this environment while simultaneously using

this map to compute vehicle location ?”

• A solution to the SLAM problem would allow robots to operate in an environment without a

priori knowledge of a map and without access to independent position information.

• A solution to the SLAM problem would open up a vast range of potential applications for

autonomous vehicles.

• A solution to the SLAM problem would make a robot truly autonomous

• Research over the last decade has shown that a solution to the SLAM problem is indeed possible.
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Localisation and Mapping: Elements
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Localisation and Mapping: General Definitions

• A discrete time index k = 1, 2, · · ·.
• xk: The true location of the vehicle at a discrete time k.

• uk: A control vector, assumed known, and applied at time k − 1 to drive the vehicle from xk−1 to

xk at time k.

• mi: The true location or parameterization of the ith landmark.

• zk,i: An observation (measurement) of the ith landmark taken from a location xk at time k.

• zk: The (generic) observation (of one or more landmarks) taken at time k.

In addition, the following sets are also defined:

• The history of states: Xk = {x0,x1, · · · ,xk} = {Xk−1,xk} .

• The history of control inputs: Uk = {u1,u2, · · · ,uk} = {Uk−1,uk} .

• The set of all landmarks: m = {m1,m2, · · · ,mM} .

• The history of observations: Zk = {z1, z2, · · · , zk} = {Zk−1, zk} .

Introduction to Estimation and Data Fusion Slide 4



The Localisation and Mapping Problem

• From knowledge of the observations Zk,

• Make inferences about the vehicle locations Xk

• and/or inferences about the landmark locations m.

• Prior knowledge (a map) can be incorporated.

• Independent knowledge (inertial/GPS, for example) may also be used.
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The Localisation Problem

• A map m is known a priori.

• The map may be a geometric map, a map of landmarks, a map of occupancy

• From a sequence of control actions Uk

• Make inferences about the unknown vehicle locations Xk
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The Localisation Problem
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The Mapping Problem

• The vehicle locations Xk are provided (by some independent means).

• Make inferences about (build) the map m

• The map may be a geometric map, a map of landmarks, a map of occupancy.
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The Mapping Problem
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The Simultaneous Localisation and Mapping Problem

• No information about m is provided

• The initial location x0 is assumed known (the origin)

• The sequence of control actions Uk is given

• Build the Map m

• At the same time inferences about the locations of the vehicle Xk

• Recognise that the two inference problems are coupled.
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The Simultaneous Localisation and Mapping Problem
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The Simultaneous Localisation and Mapping Problem

• At the heart of the SLAM problem is the recognition that localisation and mapping are coupled

problems.

• Fundamentally, this is because there is a single measurement from which two quantities are to be

inferred.

• A solution can only be obtained if the mapping and localisation process are considered together.
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Models of Sensors, Vehicles, Processes and Uncertainty

• Model sensors in the form of a likelihood P (zk | xk,m)

• Model platform motion in terms of the conditional probability P (xk | xk−1,uk)

• Recursively estimate the joint posterior P (xk,m | Zk,Uk,x0).
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Sensor and Motion Models

• Observation model describes the probability of making an observation zk when the true state of

the world is {xk,m}
P (zk | xk,m).

• The observation model also has an interpretation as a likelihood function: the knowledge gained on

{xk,m} after making the observation zk:

Λ(xk,m)
�
= P (zk | xk,m).

• It is reasonable to assume conditional independence:

P (Zk | Xk,m) =
k∏

i=1
P (zi | Xk,m) =

k∏
i=1

P (zi | xi,m).
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Observation Update Step (Bayes Theorem)

• Expand joint distribution in terms of the state

P (xk,m, zk | Zk−1,Uk,x0) = P (xk,m | zk,Z
k−1,Uk,x0)P (zk | Zk−1,Uk,x0)

= P (xk,m | Zk,Uk,x0)P (zk | Zk−1Uk)

• and the observation

P (xk,m, zk | Zk−1,Uk,x0) = P (zk | xk,m,Zk−1,Uk,x0)P (xk,m | Zk−1,Uk,x0)

= P (zk | xk,m)P (xk | Zk−1,Uk,x0)

• Rearranging:

P (xk,m | Zk,Uk,x0) =
P (zk | xk,m)P (xk,m | Zk−1,Uk,x0)

P (zk | Zk−1,Uk)
.
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Time Update Step

• Assume vehicle model is Markov:

P (xk | xk−1,uk) = P (xk | xk−1,uk,X
k−2,Uk−1,m)

• Then (Total Probability Theorem)

P (xk,m | Zk−1,Uk,x0) =
∫

P (xk,xk−1,m | Zk−1,Ukx0)dxk−1

=
∫

P (xk | xk−1,m,Zk−1,Uk,x0)P (xk−1,m | Zk−1,Uk,x0)dxk−1

=
∫

P (xk | xk−1,uk)P (xk−1,m | Zk−1,Uk−1,x0)dxk−1
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Complete Recursive Calculation

P (xk,m | Zk,Uk,x0) = K.P (zk | xk,m)
∫

P (xk | xk−1,uk)P (xk−1,m | Zk−1,Uk−1,x0)dxk−1.
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Kalman Filter Solutions to the SLAM Problem
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Augmented State Model

• Vehicle model:

xv(k) = [x(k), y(k), φ(k)]T , u(k) = [ω(k), γ(k)]T

• Landmark model

mi = [xi, yi]
T

• The augmented state model:

x(k)
�
= =




xv(k)

m1

m2

...

mM




=




f (xv(k − 1),u(k))

m1

m2

...

mM




+




qv(k)

0

0
...

0




• Landmarks are assumed stationary
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Estimation Process

• Observation model; relative observation of range and bearing

zi(k) =



zi
r(k)

zi
θ(k)


 =




√
(xi − x(k))2 + (yi − y(k))2

arctan
(

yi−y(k)
xi−x(k)

)
− φ(k)


 +



ri
r(k)

ri
θ(k)


 ,

• In principle, estimation can now proceed in the same manner as a conventional EKF.

• Substantial computational advantage can be obtained by exploiting the structure of the process

and observation models

• We now focus on the behaviour of the covariance matrix
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Covariance Analysis

• The Covariance (in the EKF) tells us all we need to know about the errors involved in the SLAM

process.

• Recall the recursion:

P(k | k − 1) = ∇fx(k)P(k − 1 | k − 1)∇T fx(k) + Q(k)

P(k | k) = P(k | k − 1) + Wi(k)Si(k)WT
i (k)

• Where

Si(k) = ∇hx,mi(k)P(k | k − 1)∇Thx,mi(k) + Ri(k)

Wi(k) = P(k | k − 1)∇Thx,mi(k)S−1
i (k)

• and consider the form the matrix:

P(i | j) =



Pvv(i | j) Pvm(i | j)

PT
vm(i | j) Pmm(i | j)
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Key Result I

The determinant of any sub-matrix of the map covariance matrix decreases monotonically as

successive observations are made.

• with all square matrices psd,

det P(k | k) = det
[
P(k | k − 1) − Wi(k)Si(k)WT

i (k)
]

≤ det P(k | k − 1)

• and noting

Pmm(k | k − 1) = Pmm(k − 1 | k − 1)

• implies

det Pmm(k | k) ≤ det Pmm(k − 1 | k − 1)

• and also for any sub-matrices of Pmm(k | k)
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Interpretation of Key Result I

• The determinant is a measure of volume,

• in this case measures the compactness of the Gaussian density function associated with the

covariance matrix,

• is strictly proportional to the Shannon information associated with this density.

• As successive observations are made, map information increases monotonically.

• The correlations between landmark locations increase

• In effect, knowledge of the relative location of landmarks increases.
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Key Result II

In the limit as successive observations are made, the errors in estimated landmark location

become fully correlated.

• Lower limit of reduction in the determinant of the map covariance matrix:

lim
k→∞ [det Pmm(k | k)] = 0

• True also for any sub-map

• The interpretation is that knowledge of the relative location of landmarks increases and, in the

limit, becomes exact.
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Result III

• In the limit, the absolute location of the landmark map is bounded only by the initial vehicle

uncertainty Pvv(0 | 0).

• The Estimated location of the platform itself is therefore also bounded.

Introduction to Estimation and Data Fusion Slide 25



SLAM Structure
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Characteristic Results: Raw Data
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Characteristic Results: Vehicle Path and Landmark Locations

−40 −30 −20 −10 0 10 20 30

−10

0

10

20

30

40

X(m)

Y
(m

)

Measured Feature Locations 
Estimated Feature Locations
Vehicle Path               

Introduction to Estimation and Data Fusion Slide 28



Characteristic Results: Vehicle Position Errors
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Characteristic Results: Example Land Mark Errors
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Characteristic Results: All Land Mark Errors
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Closed Form Results I

• Possible to get a closed-form solution to the basic 1d linear problem which provides some insight

into the nature of errors in the map and the rates of convergence.

• Simple process model:

ẋ(t) = x(t) + w

ṁi = 0, i = 1, · · · , mM

x(t) = [x(t), m1, m2, · · · , mM ]T

• and observation model

zi(t) = mi − x(t) + v

• with q = E{w2} and r = E{v2}
• In Riccati Equation of the form:

Ṗ(t) = 2P(t) + GqGT − PT (t)HTHP(t)/r

• Gives:
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Closed Form Results II

P(t) =
1

(α + 1) + (α − 1)e−2αt




q(1 − e−2αt) + 2q
α (1 − e−αt)2 · · · q

α (1 − e−αt)2 · · · q
α (1 − e−αt)2 · · ·

...
. . .

...
...

q
α (1 − e−αt)2 · · · ri(IT −r−1

i
)

(t+1)IT
+ q

α (1 + e−2αt) · · · − 1
(t+1)IT

+ q
α (1 + e−2αt) · · ·

...
...

. . .
...

q
α (1 − e−αt)2 · · · − 1

(t+1)IT
+ q

α (1 + e−2αt) · · · rj(IT −r−1
j

)

(t+1)IT
+ q

α (1 + e−2αt) · · ·
...

...
...




(1)

• where the characteristic equation of the system is

D(t) = (α + 1) + (α − 1)e−2αt

• and the total Fisher information available to the filter

IT =
n∑

i=1
r−1
i

• the dominant time constant for the system.

α =
√

qIT
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A Brief History of the SLAM Problem I

• Initial work by Smith et al. and Durrant-Whyte established a statistical basis for describing

geometric uncertainty and relationships between features or landmarks (1985-1986).

• At the same time Ayache and Faugeras, and Chatila and Laumond were undertaking early work in

visual navigation of mobile robots using Kalman filter-type algorithms.

• Discussions on how to do the SLAM problem at ICRA’86 (Cheesman, Chatila, Crowley, DW)

resulting soon after in the key paper by Smith, Self and Cheeseman.

• This paper showed that as a mobile robot moves through an unknown environment taking relative

observations of landmarks, the estimates of these landmarks are all necessarily correlated with each

other because of the common error in estimated vehicle location.
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A Brief History of the SLAM Problem II

• Work then focused on Kalman-filter based approaches to indoor vehicle navigation Especially:

– Leonard/Durrant-Whyte, Sonar and data association.

– Chatila et.al; visual navigation and mapping

– Faugeras et. al. visual navigation/motion

• Most approaches to the problem involved decoupling localisation and mapping; especially Leonard,

Rencken, Stevens, (1990-1994)

• In 1991/92 ”Chicken and Egg” paper identified some of the key issues in solving the SLAM

problem.

• A realisation that the two problems must be solved together (around 1991, then 1993-94).

Introduction to Estimation and Data Fusion Slide 35



A Brief History of the SLAM Problem III

• For me the big break-through was understanding and then demonstrating that the SLAM problem

would converge if considered as a whole (Csorba 1995).

• The SLAM acronym coined in 1995 (ISRR).

• Generating proofs of convergence and some of the first demonstrations of the SLAM algorithm,

Especially:

– Dissanayake’s work with indoor vehicles and lasers (1996-1997)

– Leonard/Feder work with sonar modeling, data association and CML (1996-1999)

– Dissanayake, Newman et.al. outdoor radar and sub-sea SLAM and final convergence proofs

(1997)

– Independently Thrun’s indoor vehicle localisation and mapping work (1997-1999).

Introduction to Estimation and Data Fusion Slide 36



Some History of the SLAM Problem IV

• ISRR 1999 session on navigation/SLAM was a key event (Leonard, Thrun, DW).

• ICRA 2000 SLAM workshop also got many other researchers interested in the problem.

• Key problems identified and then subsequent work on:

– Computationally efficient implementations (Leonard, Nebot, Newman, Tardos)

– Large-scale implementations (Nebot, Dissa)

– Data Association (Castellanos, Tardos, Leonard)

– Understanding the applicability of probabilistic methods (Thrun et.al, DW et.al)

– Multiple Vehicle SLAM (Nettleton, Thrun, Williams)

– Implementations indoor, on land, air and sub-sea.

• By ICRA 2002, many new methods and ideas with groups working at ANU, CMU, EPTL, KTH,

MIT, Oxford, Sydney, Zaragoza

• Most of which you will now hear about ...
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Overview

• The SLAM problem
• Models 
• Standard EKF Implementation
• Simplifications in the Prediction and Update Stages
• Optimal Implementation of EKF SLAM
• Relative Map Representation
• Sub-optimal Filters
• Exploration
• Labs
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Basic Principle of  SLAM

Vehicle Features
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System Description
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Kalman Implementation

• Prediction Stage

( / 1) ( ) ( 1/ 1) ( )T
x xP k k f k P k k f k Q− = ∇ − − ∇ +

x k f x k u k k v k( ) ( ( ), ( ), ) ( )= − − + −1 1 1

Can also model noise in the inputs

• This step is performed each time a set of inputs 
is available ( High Frequency information ). 

• The uncertainty in the pose of the vehicle will 
grow according to the uncertainty of the model
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Kalman Implementation

• Update Stage
– The update stage is performed once a feature is 

associated to a known feature.

ˆ( ) ( ) ( ( / 1))k z k h x k kµ = − − ˆ( / ) ( / 1) ( ) ( )x k k x k k W k kµ= − +%

1( ) ( / 1) ( ) ( )

( / ) ( / 1) ( ) ( ) ( )
( ) ( ) ( / 1) ( )

T
x

T

T
x x

W k P k k h k S k

P k k P k k W k S k W k
S k h k P k k h k R

−= − ∇

= − −

= ∇ − ∇ +
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Vehicle Model

cos( )
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tan( )

c c
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φ α
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antenna position (top of the Laser)
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Vehicle Model

Discrete Model

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( )

cos sin cos tan

sin cos sin tan

tan

c
c

c
c

c

v
v a b

Lx
v

y v a b
L

v
L

&

&

&

φ φ φ α

φ φ φ α
φ

α

 ⋅ − ⋅ ⋅ + ⋅ ⋅ 
   
   = ⋅ + ⋅ ⋅ − ⋅ ⋅   
      ⋅

  

( ) ( cos( ) tan( )( sin( ) cos( )))
( 1)
( 1) ( , ) ( ) ( sin( ) tan( )( cos( ) sin( )))
( 1)

( ) tan( )

c
c

c
c

c

v
x k T v a b

Lx k
v

y k f x u y k T v a b
L

k v
k T

L

φ φ φ φ

φ φ φ φ
φ

φ α

 + ∆ − + 
+   

   + = = + ∆ + + −   
   + 

 + ∆
  

Continuous Model
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Vehicle Model

Discrete Model

( ) ( cos( ) tan( )( sin( ) cos( )))
( 1)
( 1) ( , ) ( ) ( sin( ) tan( )( cos( ) sin( )))
( 1)

( ) tan( )

c
c

c
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c

v
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v

y k f x u y k T v a b
L

k v
k T
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φ φ φ φ
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Jacobian
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Observation Model

• Jacobians
2 2( ) ( )

( ) ( )
atan

( ) 2

L v L v
r

L v

L v

x x y yz
h x y yz

x x
β

πφ

 − + −
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zh
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h zX
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h
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X
h y x y x
X
x x x y y y

x
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β

φ

φ

∂ ∂ 
   ∂∂ ∂   = =  ∂ ∂∂  
  ∂ ∂    

∂
= −∆ −∆ ∆ ∆

∂ ∆
∂ ∆ ∆ ∆ ∆ = − − − ∂ ∆ ∆ ∆ ∆ 
∆ = − ∆ = −
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Data Association

• Before the Update Stage we need to determine if 
the feature we are observing is: 
– An old feature 
– A new feature

• If there is a  match with only one known Feature:
– The Update stage is run with this Feature information
– Not all the Feature need to be checked since the vehicle 

pose is known with a given uncertainty (Selective Search)

( ) ( ) ( / 1) ( )T
x xS k h k P k k h k R= ∇ − ∇ +µ( ) ( ) ( $( / ))k z k h x k k= − −1

1 2
0.95( ) ( ) ( )T k S k kα µ µ χ−= <
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New Features

• If there is no match then a potential new feature has 
been detected

• We do not want to incorporate an spurious 
observation as a new feature
– It will not be observed again and will consume 

computational time and memory
– The features are assumed to be static. We don not want to 

accept dynamic objects as features: cars, people etc.
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Acceptance of New Features

• Get the feature in a list of potential features
• Incorporate the feature once it has been observed for a 

number of times

• Advantages:
– Simple to implement
– Appropriate for High Frequency external sensor

• Disadvantages:
– Loss of information
– Potentially a problem with sensor with small field of view: a feature 

may only be seen very few times

• APPROACH 1
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Acceptance of New Features

• The state vector is extended with past vehicle positions and the
estimation of the cross-correlation between current and previous 
vehicle states is maintained. With this approach improved data 
association is possible by combining data form various points
– J. J. Leonard and R. J. Rikoski. Incorporation of delayed decision making 

into stochastic mapping 
– Stephan Williams, PhD Thesis, 2001, University of Sydney

• Advantages:
– No Loss of Information
– Absolutely necessary for Low frequency external sensors ( ratio between 

vehicle velocity and feature rate information )

• Disadvantages:
– The implementation is more complicated

• APPROACH 2
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Incorporation of New Features
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Incorporation of New Features

• Approach 1
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( ) ( ) ( / 1) ( )

( / ) ( / 1) ( ) ( ) ( )

T
x

T
x x

T

W k P k k h k S k

S k h k P k k h k R

P k k P k k W k S k W k

−= − ∇

= ∇ − ∇ +

= − −

1 1 1

1 1 1
1

1 1 1

vv vm vn

mv mm mn

nv nm nn

P P P
P P P P

P P P

 
 =  
  

• Easy to understand and 
implement

• Very large values of A 
may introduce numerical 
problems
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Analytical Approach

0 0
, ,

0 0 0
, ,

v v v m

m v m m

P P
P

P P
 

=  
 

• We can also evaluate the 
analytical expressions of 
the new terms

0 0
, ,

0 0
1 , ,

?
?

? ? ?

v v v m

m v m m

P P
P P P

 
 =  
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Analytical Approach
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B R
h X Z z
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• Assume the following 
System

We need P1

cos( / 2)
( , )

sin( / 2)
v v

v v

x
h X Z

y
ϕ α π
ϕ α π

+ + − 
=  + + − 

1 0
T T

z zP J P J J R J= +
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Analytical Approach

0 0 0
, , ,
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1 , , ,
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T
m v m m m v
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ξ
ξ

ξ ξ ξ ξ

 
 =  
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0 1 sin( / 2)
v v

v
v v v

v r k k r k k

h x y
ϕ α ϕ α

ϕ α π
ϕ

ϕ
ξ

α π
=

+ − 
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R
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B
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=
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• The analytical form of the covariance matrix for the 
new feature:

cos( / 2) sin( / 2)
( ( , ) / ) / ( , )

sin( / 2) cos( / 2)
v v

v
v v

r
h X Z z h r

r
ϕ α π ϕ α π

η α
ϕ α π ϕ α π

+ − − + − 
= ∂ ∂ = ∂ ∂ =  + − + − 
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Now We know

• Structure of the Problem
• Models
• Kalman Filter Equations
• Data Association
• Feature Incorporation

Problem Solved ?
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Computational Requirements

1
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JF x
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3 3 3
1 , ,x xN NxNJ R R I R∈ ∅∈ ∈

The computational requirements 
for each update will be 
proportional to                             

3N
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Simplifications ( Prediction Stage )

• In most navigation system the dead 
reckoning information is available at high 
frequency.

• The full error covariance matrix is only 
needed when a new set of observation is 
available

( ) ( )( )
( ) ( ) ( )

1

1, , T

X k F X k

P k k J P k k J Q k

+ =

+ = ⋅ ⋅ +

) )
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Simplifications ( Prediction Stage )

Considering the zeros in the Jacobian matrices.

11 121 1

21 22 2

3 3 3 2 2 2
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Simplifications ( Prediction Stage )

( )

11 12 1 11 1 12 1 11 1 121

21 22 21 22 21 22

1 11 1 1 121 11 1 12 1 11 1 1 121

21 22 21 1 22 1 12 22

T

TTT T
T

TT

P P J P J P J P J PJ
J P

P P I P I P P PI

J P J J PJ P J P J P J J P IJ
J P J

P P P J P II J P P

⋅ ⋅ ⋅ ⋅∅       
⋅ = ⋅ = =       ⋅ ⋅∅       

 ⋅ ⋅ ⋅⋅ ⋅    ⋅ ⋅ ⋅ ⋅∅ 
⋅ ⋅ = ⋅ = =    ⋅ ⋅∅ ⋅      


 
 

( ) ( )
( )( ) ( )

11 1 12

1 12 22

2, ,
( 2 / )

, ,
T

P k k G P k k
P k k

G P k k P k k

 + ⋅ 
 + =

⋅  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 1 1

11 1 1 11 1 11 1

1

2, 1 , 1TT

G J k J k

P k k J k J k P k k J k Q k J k

= + ⋅

+ = + ⋅ ⋅ ⋅ + ⋅ +with



SLAMEduardo Nebot 25

Simplifications ( Prediction Stage )

For n predictions:

( )
( ) ( )

( )( ) ( )
11 1 12
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P11 is required at each step, P22 remains constant and P21
P12 are required only at the update stage
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Simplification Update stage

The evaluation of the gain W requires P H’

Quadratic ( 4 * M * M )

1( ) ( / 1) ( ) ( )

( / ) ( / 1) ( ) ( ) ( )
( ) ( ) ( / 1) ( )
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x x
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= ∇ − ∇ +
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Simplification Update stage

( )
( )

[ ]
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X x y
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h j i
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= = = ∅ ∅ ∈ = +

∂

∂ ∂
= = ∈
∂ ∂

∂ ∂
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 ∂
∅ ∅ = =∅ ∀ ≠  ∂ 

The Jacobian of the Observation matrix H will normally have a large 
number of zeros since very few landmarks will be observed at a given 
time:
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Simplification Update stage

The operations can be simplified with

TP P W S W= − ⋅ ⋅
Quadratic ( 4 * M * M )

1 1 2 2
3 2

1 2,

T T T

Mx Mx

P H P H P H
P R P R
⋅ = ⋅ + ⋅

∈ ∈

2*2

1 2

T

T Mx

S H P H R R
W P H S R−

= ⋅ ⋅ + ∈

= ⋅ ⋅ ∈

Still the main computational 
requirement is in the update 
of P  ( order 4 M*M )
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Experimental Results
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Experimental Results
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Estimated Trajectory using 
beacons
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Estimated error covariance 

The error is in 
the order of 7 cm.
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Innovation Sequence
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Autocorrelation of Innovation Sequence

In this case the location of the beacon is not required0 50 100 150 200 250 300 350 400 450 500
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Beacons Standard Deviations 

The error is in 
the order of 7 cm.
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Efficient EKF implementation of SLAM

• For environment with large number of 
landmarks the standard Kalman Filter 
implementation is still very expensive  N * N
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Compressed Filter (CEKF)

Vehicle Features

• Key Concept: 
– When the vehicle navigates in a local area observing a 

group of features the information gained is a function of 
only the observed features.

– This information can be saved and then transferred in 
one iteration to the rest of the map

A

Global Area
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Compressed EKF (CEKF)

Assume a system with dynamic and observation 
models:
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Compressed EKF (CEKF)

When k=k1 1 1 1
, 0 , 0k k kIφ ψ θ= = =

When 
k=k2 Global 

update

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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22 1 1
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Each Prediction and 

update
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Advantages of the CEKF Algorithm

Vehicle Features

• Constant Computational Requirements
– Independent of the total number of features in the 

global map
• Full use of High Frequency sensors
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Compressed Filter

A

Global 
Area

• The computational cost of the SLAM proportional to 
2Na * 2Na 

– (Na landmarks in the local area)
• Full update is only required when the vehicle leaves 

the local Area A
– Only the features in the new area need to be updated
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General Compressed Filters
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Compressed filter operation

t1 t2 t3 t4

high frequency internal updates high frequency internal updates

global update global update global update global update

•Internal estimator ( predictions and observations ) at high 
frequency. Estimator running on a reduced system

•External Estimator

•Global updates: low frequency full EKF update.

AX
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*EKF

*”Unscented Filter”

*S.O.G.     ….

Global Update  (Large system estimation):  EKF

t1 t2 t3 t4

t

Internal operation
* high 
frequency

* Small system

Compressed filter operation



SLAMEduardo Nebot 45

Global update

( )2 2

2 2SLAM

general case             

case ( ) ( )
A B

B A B

O N N

O L N O N N

 ⋅


⋅ ≤ ⋅

It is a low frequency event.

The reduced system estimator transfers the collected information to the full 
system doing an full EKF update.

If necessary, It performs a Gaussian Approximation of p(Xa(k)|Z(k))

Full EKF update

Computational Cost

An EKF / EKF combination (CEKF) gives identical result to the full EKF.
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Compressed filters Properties:

*Internal estimator ( small system) can be more 
sophisticated.

* Sub optimal simplifications run at the global 
update (low frequency)

•High frequency.

•Good numerical 
stability.

•Adequate for non linear 
problems.

•It can be less 
conservative…if Sub 
Optimal simplifications 
are used.
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EXAMPLE 

When k=k1 1 1 1
, 0 , 0k k kIφ ψ θ= = =

When 
k=k2 Global 

update
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Map Management

r

hysteresis region

Active sectors

Active landmark

Passive landmark
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Map Management
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Experimental Run
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Outdoor Environment
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SLAM
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Map and Trajectory 

Landmarks

Covariance
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Landmark Covariance
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CEKF–SLAM    vs Full EKF 
SLAM
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Compressed Algorithm
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Relative Representation
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Landmark classification

Landmark types

•“A” Bases  :   Absolute

•“B” Bases  :   Semi-absolute

• Li normal landmarks: Relative

Base B

L 1

L 2

L 3

  Base A 
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Constellation Map

B1A1

L1,1

L1,2
L1,3

L1,n

A2

B2

L2,n

L3,n

B3

A3

X

Y



SLAMEduardo Nebot 60

SLAM Map and trajectory  (Victoria 
Park)
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Correlation Coefficients for 
the absolute representation
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Sub-Optimal SLAM
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Sub-optimal Solutions: De-
correlation Algorithms

• In the general case it is possible to de-correlate 
the covariance submatrices corresponding to two 
groups of states, Xa and Xb.
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De-correlation Procedure
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Selection of Passive and Active 
States 

Active base landmarks

Active relative 
landmarks.

Passive close relative 
landmarks.

Passive far relative 
landmarks.

.
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State 
Covariance 

Matrix

Decorrelation Matrices
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Reduced Covariance Matrix
a

b

0

0
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Experimental results
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Compressed / Simplifications
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Difference in position estimation
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Difference in orientation estimation
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Exploration
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Map (section of Victoria Park)
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Information maps
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Example, using laser 
observations
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Original map and Information Map
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Level sets
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SLAM Research
• Robust SLAM Implementation

– Incorporation Absolute / Relative Information
– Closing Large Loops
– Link control with navigation
– Extension to 3-D  ( Inertial / 3D sensors )

• Multiple Vehicle problem
• Environment Representation

– Non-feature based representation
– Terrain Description
– Generic definition of Terrain Features 

• All terrain Navigation
– Dead Reckoning from external information
– Incorporation of 3D sensory information
– Inertial aided with relative information
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Labs

• SLAM code
– GPS ( running for the first few seconds to obtain 

heading )
– Feature Incorporation ( validation )

• Victoria Data
– ViewLsr ( Return range and bearing to trees )
– Use same vehicle models
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END


