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1 Quick start

Hi there! To start the toolbox, do the following;:

1. Visit www.joansola.eu and download the toolbox package.

2. Move slamToolbox.zip where you want the SLAM toolbox to be
installed. Unzip it.

3. Rename the expanded directory if wanted (we’ll call this directory
SLAMTB/).

4. Open Matlab. Add all directories and subdirectories in SLAMTB/ to
the Matlab path:
File > Set Path > Add with subfolders > [select SLAMTB folder]

5. Go to the toolbox directory, ed [path]/SLAMTB/

6. Execute slamtb from the Matlab prompt.

1.1  Quick curiosity

Or, if you want to get some more insight:

7. Edit userData.m. Read the help lines. Explore options and create,
by copying and modifying, new robots and sensors. You can modify
the robots’ initial positions and motions and the sensors’ positions

and parameters. You can also modify the default set of landmarks or
‘“World’.

8. Edit and run slamtb.m. Explore its code by debugging step-by-step.
Explore the Map figure by zooming and rotating with the mouse.

9. Read the help contents of the following 4 functions: frame, fromFrame,
q2R, pinHole. Follow some of the See also links.

10. Set FigOpt .createVideo to 'true' in userData. Obtain a series of
images to create a video sequence — locate them at
SLAMTB/figures/simu/idpPnt /mono/images/.

11. Read ‘guidelines.pdf’ before contributing your own code.

1.2  Quick expert

Or, if you want to explore the full capacity of this toolbox:

12. SLAM WITH POINTS: Choose userDataPnt instead of the de-
fault userData (at the third line of code in slamtb.m). Scroll down
to find the structure Oobs. Try landmark types 'idpPnt', 'ahmPnt',
"hmgPnt ', and 'fhmPnt'! in entry Opt.init.initType, and com-

!Framed homogeneous points as described in [1]


www.joansola.eu
http://www.joansola.eu/JoanSola/objectes/toolbox/guidelines.pdf

13.

14.

15.

16.

pare performances of inverse-depth against anchored-homogeneous,
framed-homogeneous and pure-homogeneous parametrizations for SLAM
with 3D points. Read [3, 16].

SLAM WITH LINES: Choose userDataLin instead of the default
userData (at the third line of code in slamtb.m). Scroll down to
find the structure obs. Try landmark types 'plkLin', 'aplLin',
'hmgLin', 'ahmLin' and 'idpLin' in entry Opt.init.initType
and compare performances of Plucker, anchored Plucker, Homoge-

neous, Anchored-homogeneous and Inverse-depth parametrizations for
3D lines. Read [17, 16].

SLAM WITH OMNIDIRECTIONAL CAMERA Edit userData.m
or userDataPnt.m, go to the Sensor{1l} section, comment it, and
uncomment a second Sensor{1l} below with a model for Omnicam.
Choose 'ahmpPnt' (see 12 above). Thanks to Grigory Abuladze for
this contribution!

SLAM WITH MULTIPLE SENSORS: Choose userData as the
user data file in slamtb. Uncomment the full Sensor{2} structure in
userData and get bi-camera SLAM. Set Sensor{2}.£frameInMap to
"true' and get extrinsic self-calibration of the stereo rig. Read [15].

SLAM WITH MULTIPLE ROBOTS: Uncomment the full Robot{2}
structure. Set Sensor{2}.robot = 2 to assign sensor 2 to robot 2.
Get multi-robot centralized SLAM. Read [15].



2 The SLAM toolbox presentation

In a typical SLAM problem, one or more robots navigate an environment,
discovering and mapping landmarks on the way by means of their onboard
sensors. Observe in Fig. 1 the existence of robots of different kinds, carrying
a different number of sensors of different kinds, which gather raw data and,
by processing it, are capable of observing landmarks of different kinds. All
this variety of data is handled by the present toolbox in a way that is quite
transparent.

In this toolbox, we organized the data into three main groups, see Table
1. The first group contains the objects of the SLAM problem itself, as they
appear in Fig. 1. A second group contains objects for simulation. A third
group is designated for graphics output, Fig. 2. See Table 2 to see the object
types and options that are currently implemented.

Apart from the data, we have of course the functions. Functions are
organized in three levels, from most abstract and generic to the basic ma-
nipulations, as is sketched in Fig. 3. The highest level, called High Level,
deals exclusively with the structured data we mentioned just above, and calls
functions of an intermediate level called the Interface Level. The interface
level functions split the data structures into more mathematically meaning-
ful elements, check objects types to decide on the applicable methods, and
call the basic functions that constitute the basic level, called the Low Level
Library.
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Figure 1: Overview of the SLAM problem with the principal data structures.

Table 1: All data structures.

Purpose SLAM Simulator ~ Graphics
Map Map MapFig

Robots Rob SimRob

Sensors Sen SimSen SenFig

Raw data Raw

Landmarks Lmk SimLmk

Observations Obs

Time Tim

Options Opt SimOpt FigOpt
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Figure 2: The set of figures. The structures MapFig and SenFig (s) contain
the handles to all graphics objects drawn.

Table 2: Supported object types

Object class type Variable value
Robot motion odometry Rob.motion 'odometry'
Robot motion constant velocity Rob.motion 'constVel'

Sensor pin-hole camera Sen.type 'pinHole'

Sensor omni-dir. camera Sen.type 'omniCam'
Landmark Euclidean point Lmk.type 'eucPnt'
Landmark Homogeneous point Lmk.type 'hmgPnt'
Landmark Anchored homog. point Lmk.type 'ahmPnt'
Landmark Inverse-depth point Lmk.type 'idpPnt'
Landmark Framed homog. point Lmk.type 'fhmPnt'
Landmark Plucker line Lmk.type 'plkLin'
Landmark Anchored Plucker line Lmk.type 'aplLin'
Landmark Homogeneous line Lmk.type 'hmgLin'
Landmark Anchored homogeneous line Lmk.type 'ahmLin'
Landmark Inverse-depth line Lmk.type 'idpLin'
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Figure 3: Overview of the levels of abstraction of the functions and their
relation to data structuration. Functions and scripts in the High and Inter-
face levels are in the HighLevel/ and InterfaceLevel/ directories. The
Low Level library occupies all other directories.



3 Data organization

It follows a brief explanation of the SLAM data structures, the Simulation
and Graphic structures, and the plain data types.

3.1 SLAM data

For a SLAM system to be complete, we need to consider the following parts:

Rob: A set of robots.

Sen: A set of sensors.

Raw: A set of raw data captures, one per sensor.
Lmk: A set of landmarks.

Map: A stochastic map containing the states of robots, landmarks, and
eventually sensors.

Obs: The set of landmark observations made by processing Raw data.
Tim: A few time-related variables.

opt: Algorithm options.

This toolbox considers these objects as the only existing data for SLAM.
They are defined as structures holding a variety of fields (see Figs. 4 to
11 for reference). Structure arrays hold any number of such objects. For
example, all the data related to robot number 2 is stored in Rob(2). To
access the rotation matrix defining the orientation of this robot we simply
use Rob (2) . frame.R (type help frame at the Matlab prompt for help on
3D reference frames). Observations require two indices because they relate
sensors to landmarks. Thus, Obs (sen, 1mk) stores the data associated to
the observation of landmark 1mk from sensor sen.

It would be wise, before reading on, to revisit Fig. 1 and see how simple
things are.

It follows a reproduction of the arborescences of the principal structures

in the SLAM data.



Rob (rob)
.rob
.id
.name
.type
.sensors
.motion
.con

.vel

%

o o° d° Jd° o° o

% Robot structure, containing:

index in Rob() array

robot id

robot name

robot type

list of installed sensors

motion model

control structure

% control signals for the motion model

% standard deviation of u

% covariance of u

frame structure, containing:

7—vector, position and orientation x = [t;q]
covariances matrix of x

position

orientation quaternion

rotation matrix, R = g2R(q)

transposed R

PI matrix, Pi = g2Pi(q)

conjugate PI matrix, Pc = pi2pc(Pi)
range in the SLAM map Map

velocity stucture, containing

% 6—vector, linear and angular velocities
% covariances matrix of x

% range in the SLAM map Map

state structure, containing

% robot's state vector, x = [frame.x;vel.x]
% covariances matrix of x

% size of x

% range in the SLAM map Map

o0 d° d° d° o° d° d° o° of

Figure 4: The Rob structure array.
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Sen (sen) % Sensor structure, containing:
.sen % index in Sen() array

.id % sensor id
.name % sensor name
.type % sensor type
.robot % robot it is installed to
.frameInMap % flag: is frame in Map?
frame % frame structure, containing:
X % 7—vector, position and orientation x = [t;q]
P % covariances matrix of x
.t % position
.q % orientation quaternion
.R % rotation matrix, R = gq2R(q)
.Rt % transposed R
.Pi % PI matrix, Pi = q2Pi(q)
.Pc % conjugate PI matrix, Pc = pi2pc(Pi)
.r % range in the SLAM map Map

.par % sensor parameters

.k % intrinsic params
.d % distortion vector
.c % correction vector
.imSize % image size
.pixErr % pixel error std.
.pixCov % pixel covariances matrix
.state % state structure, containing
.X % sensor's state vector, x = frame.x or x = []
.P % covariances matrix of x
.size % size of x
.r % range in the SLAM map Map
.imGrid % image grid for active initialization

.imSize % image size — copy of par.imSize

.numCells % number of cells [H,6V]

.skipOuter % flag to skip outer cells

.usedCell % boolean matrix of flags indicating used cells
.xticks % x—coordinates of cell corners

.yticks % y—coordinates of cell corners

Figure 5: The Sen structure array.
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Raw (sen) % Raw data structure, containing:

.type % type of raw data
.data % raw data, containing
.points % 3D point landmarks (for simulated data)
.coord % a matrix of points
.app % a vector of appearances
.segments % 3D segment landmarks (for simulated data)
.coord % a matrix of segments (two endpoints, stacked)
.app % a vector of appearances
.img % a pixels image (for real images)

Figure 6: The Raw structure array.

Lmk (1mk) % Landmark structure, containing:
.1lmk % index in Lmk () array
.id % landmark id
.type % sensor type
.sig % landmark descriptor or signature
.used % flag: is landmark used in the map-?
.state % state structure, containing
.r % range in the SLAM map Map
.par % other lmk parameters
.endp () % 2 endpoints for segments
.t % abscissa
.e % endpoints mean
.nSearch % number of times searched
.nMatch % number of times matched
.nInlier % number of times declared inlier
Figure 7: The Lmk structure array.
Map % Map structure, containing:
.used % vector of flags indicating non—free positions
X % state vector's mean
.P % covariances matrix

Figure 8: The Map structure.
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Obs (sen,1lmk) % Observation structure, containing:

.sen
.1mk
.sid
.1lid
.stype
.ltype
.meas
4
.R
.nom

.exp

.inn

-app
.pred
.curr
.sc
.par
.endp ()
.e
.E
.vis
.measured
.matched
.updated
.Jac
.E_r
.E_s
.E_1
.Z.r
.Z_s
.Z_1

%

o° o° d° d° o° o

o d° d° o° o°

index to sensor in Sen() array
index to landmark in Lmk () array
sensor id
landmark id
sensor type
landmark type
measurement
% mean
% covariance
non—measurable degrees of freedom
% mean
% covariance
expectation
% mean
% covariance
% uncertainty measure, um = det (E)
innovation
% mean
% covariance
% inverse covariance
% squared Mahalanobis distance, MD2 =
appearance
% predicted appearance
% current appearance
% matching quality score
other parameters
% two segment endpoints
% mean
% covariance
flag: is lmk visible from sensor?
flag: has lmk been measured?
flag: has 1lmk been matched?
flag: has Map been updated?
Jacobians
expectation wrt robot frame vector
expectation wrt sensor frame vector
expectation wrt landmark parameters
innovation wrt robot frame vector
innovation wrt sensor frame vector
innovation wrt landmark parameters

o d° d° o° o° o

z'xiZ*z

Figure 9: The Obs structure array.
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Tim % Time structure, containing:
.dt % Sampling period in seconds
.firstFrame % first frame to evaluate
.lastFrame % last frame to evaluate

Figure 10: The Tim structure.

ks

Oopt % Options structure, containing:
.map % Options for the map
.numLmks % map capacity: number of 3d landmarks
.1lmkSize % nominal 1lmk size (for map size estimatiopn)
.correct Options for lmk correction
.reprojectLmks % reproject lmks after active search?
.rearametrize % reparametrize landmark?
.nUpdates % maximum simultaneus updates
.MD2th % threshold on Mahalanobis distance
.1linTestIdp % threshold on IDP linearity test
.lines % line landmarks correction
.innType % innovation type for lines
.extPolicy % endpoints extension policy
.extSwitch % policy switching threshold
.init Options for initialization
.nbrInits % Number of inits [first frame , other frames]
.initType % Type of landmark to initialize
.idpPnt % options for inverse—depth based landmar
.nonObsMean % mean of non—observable prior
.nonObsStd % std dev. of non-observable prior
.plkLin % Plucker based lines
.nonObsMean
.nonObsStd
.obs % Observation options
.lines % options for lines or segments
.minLength % minimum segment length

Figure 11: The opt structure.
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3.2 Simulation data

This toolbox also includes simulated scenarios. We use for them the follow-
ing objects, that come with 6-letter names to differentiate from the SLAM
data:

SimRob: Virtual robots for simulation.
SimSen: Virtual sensors for simulation.
SimLmk: A virtual world of landmarks for simulation.

simOpt : Options for the simulator.

The simulation structures SimXxx are simplified versions of those existing
in the SLAM data. Their arborescence is much smaller, and sometimes they
may have absolutely different organization. It is important to understand
that none of these structures is necessary if the toolbox is to be used with
real data.

It follows a reproduction of the arborescences of the principal simulation
data structures.

15



SimRob (rob) % Simulated robot structure, containing:

.rob % index in SimRob () array
.id % robot id
.name % robot name
.type % robot type
.motion % motion model
.sensors % list of installed sensors
.frame % frame structure, containing:
X % 7—vector, position and orientation x = [t;q]
.t % position
.q % orientation quaternion
.R % rotation matrix, R = gq2R(q)
.Rt % transposed R
.Pi % PI matrix, Pi = q2Pi(q)
.Pc % conjugate PI matrix, Pc = pi2pc(Pi)
.vel % velocity stucture, containing
.X % 6—vector, linear and angular velocities
.con % Control vector
.u % control signals for the motion model
.usStd % standard deviation of u
.U % covariance of u
Figure 12: The simRob structure array.
SimSen (sen) % Simulated Sensor structure, containing:
.sen % index in SimSen () array
.id % sensor id
.name % sensor name
.type % sensor type
.robot % robot it is installed to
. frame % frame structure, containing:
.X % 7—vector, position and orientation x = [t;q]
.t % position
.q % orientation quaternion
.R % rotation matrix, R = gq2R(q)
.Rt % transposed R
.Pi % PI matrix, Pi = q2Pi(q)
.Pc % conjugate PI matrix, Pc = pi2pc(Pi)
.par % sensor parameters
.k % intrinsic params
.d % distortion vector
.c % correction vector
imSize % image size

Figure 13: The simSen structure array.
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SimLmk % Simulated landmarks structure, containing:

.points % Point landmarks
.id % N-vector of point identifiers
.coord % 3—by—N array of 3D points
. segments % segment landmarks
.id % M—vector of segment identifiers
.coord % 6—by—M array of 3D segments
.lims % limits of playground in X, Y and Z axes
.XMin % minimum X coordinate
.xMax % maximum X coordinate
.yMin % minimum Y coordinate
.yMax % maximum Y coordinate
.zMin % minimum Z coordinate
. zMax % maximum Z coordinate
.dims % dimensions of playground
.1 % length in X
W % width in Y
.h % height in 2
.center % central point
.xMean % central X
.yMean % central Y
.zMean % central Z

Figure 14: The SimLmk structure.

SimOpt % Simulator options structure, containing:
. random % random generator options
.newSeed % use true random generator?
.fixedSeed % random seed for non-random runs
.seed % actual seed
.obs % options for simulated observations.

% (this is a hard-—copy of Obs.obs)

Figure 15: The simOpt structure
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3.3 Graphics data

This toolbox also includes graphics output. We use for them the following
objects, which come also with 6-letter names:

MapFig: A structure of handles to graphics objects in the 3D map figure.
One Map figure showing the world, the robots, the sensors, and the
current state of the estimated SLAM map (Figs. 16 and 17).

SenFig: A structure array of handles to graphics objects in the sensor
figures. One figure per sensor, visualizing its measurement space (Figs.
18 and 19).

FigOpt: A structure with options for figures such as colors, views and
projections.

It follows a reproduction of the arborescences of the principal graphics
structures. See Section 5.7 for information about graphic functions.
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Figure 16: The 3D map figure. MapFig contains handles to all objects
drawn.

MapFig % Map figure structure, containing:
.fig % figure number and handle
.axes % axes handle
.ground % handle to floor object

.Rob

o°

array of structures to SLAM robot handles
.patch % handle to robot graphics patch
.ellipse % handle to robot's uncertainty ellipsoid

.Sen % array of handles to SLAM sensors

. Lmk % handles to SLAM landmarks, containing:
.drawn % array of flags indicating drawn landmarks
.mean % array of handles to landmarks means
.ellipse % array of handles to landmarks ellipses
.label % array of handles to landmarks labels

.simRob % array of handles to simulated robots

.simSen % array of handles to simulated sensors

. simLmk % handle to simulated landmarks

Figure 17: The MapFig structure.
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Figure 18: A pin-hole sensor view figure.

all objects drawn.

&

SenFig (1) contains handles to

SenFig(sen)
.fig
.axes
.raw

.points

.drawn

.measure

.mean

.ellipse

.label

% Sensor figure structure,

containing:

% figure number and handle

% axes handle
% handles to raw data

% handle to one line object for all raw points
.segments % array of handles to line objects for raw segme
vector of flags indicating drawn observations
array of handles to landmarks measurements

array of handles to predicted means
array of handles to predicted ellipses
array of handles to landmarks labels

o o°

o° o0 o

nts

Figure 19: The SenFig structure array.
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FigOpt % Figure options structure, containing:
.renderer % renderer
.rendPeriod % rendering period in frames
.createVideo % flag: create video sequence?
.map % map figure options
.proj % projection of the 3d figure
.View % viewpoint of the 3d figure
.orbit % AZ and EL orbit angle increments
.size % map figure size
.showSimLmk % flag: show simulated landmarks?
.showEllip % flag: show uncertainty ellipsoids?
.colors % map figure colors
.border % border
.axes % axes, ticks and axes labels
.bckgnd % background
. simLmk % simulated landmarks
.defPnt % default point
.mean % mean dot
.ellip % ellipsoid
.othPnt % other point
.mean % mean dot
.ellip % ellipsoid
.defLin % default line
.mean % mean line
.ellip % endpoint ellipsoids
.simu % simulated robots and sensors
.est % estimated robots and sensors
.ground % ground
.label % landmark ID labels
.sensor % sensor figures options
.size % sensor figure size
.showEllip % flag: show uncertainty ellipses?
.colors % Sensor figure colors:
.border % border
.axes % axes, ticks and axes labels
.bckgnd % background
.raw % raw data
.defPnt % euclidean point
.updated % updated
.predicted % predicted
.othPnt % other point
.updated % updated
.predicted % predicted
.defLin % default line
.meas % measurement
.mean % mean line
.ellip % endpoint ellipses
.othLin % other line
.meas % measurement
.mean % mean line
.ellip % endpoint ellipses
.label % label

Figure 20: The Figopt structure.




3.4 Plain data

The structured data we have seen so far is composed of chunks of lower
complexity structures and plain data. This plain data is the data that the
low-level functions take as inputs and deliver as outputs.

For plain data we mean:

logicals and scalars: Any Matlab scalar valuesuchasa = 5orb = true.

vectors and matrices: Any Matlab array suchasv = [1;2],w = [1 2],
c = [true false] orM = [1 2;3 4].

character strings: Any Matlab alphanumeric string such as type = 'pinHole'
or dir = '$HOME/tmp/'.

frames: Frames are Matlab structures that we created to store data belong-
ing to 3D frames (see Fig. 21 for an instance of the frame structure;
type help frame at the Matlab prompt). We do this to avoid having
to compute multiple times rotation matrices and other frame-related
constructions.

A frame is specified by a 7-vector £rame.x containing translation vec-
tor and an orientation quaternion (type help quaternion at the Mat-
lab prompt). This is the essential frame information. After each set-
ting or modification of the state frame.x, call the updateFrame ()
function to create/update the rest of the frame structure.

frame % Frame structure, containing:
X % the state 7—vector
.t % translation vector, t = x(1:3)
.q % orientation quaternion, g = x(4:7)
.R % rotation matrix, R = g2R(q)
.Rt % transposed R, Rt = R'
Pi % PI matrix, Pi = g2Pi(q)
Pc % conjugate PI matrix, Pc = g2Pi (iq)

Figure 21: The frame structure.
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4 Functions

The SLAM toolbox is composed of functions of different importance, defin-
ing three levels of abstraction (Fig. 3). They are stored in subdirectories
according to their field of utility. There are two particular directories:
HighLevel, with two scripts and a limited set of high-level functions; and
Interfacelevel, with a number of functions interfacing the high level data
with the low-level library. All other directories contain low-level functions.

4.1 High level

The high level scripts and functions are located in the directory
SLAMtoolbox/HighLevel/.

There are two main scripts that constitute the highest level, one for the
code and one for the data:

slamtb.m: the main script. It initializes all data structures and figures,
and performs the temporal loop by first simulating motions and mea-
surements, second estimating the map and localization (the SLAM
algorithm itself), and third visualizing all the data.

Here is a simplified version of this script:

% SLAMTB EKF-SLAM simulator. Main script.

% User—defined data.
userData;

% Create all data structures
[Rob, Sen, Lmk, Obs, Tim] = createSlamStructures(...
Robot, Sensor, Landmark, Time,

Opt) ;

[SimRob, SimSen, SimLmk] = createSimStructures(...
Robot, Sensor, World, ...
SimOpt) ;

[MapFig, SenFig] = createGraphicsStructures(...

Rob, Sen, Lmk, Obs,
SimRob, SimSen, SimLmk,
FigOpt) ;

% Main loop

for currentFrame = Tim.firstFrame : Tim.lastFrame

$ 1. SIMULATION
for rob = [SimRob.rob]

% Simulate robot motion
SimRob (rob) = simMotion (SimRob (rob), Tim);
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for sen = SimRob (rob) .sensors
% Simulate measurements
SimObs (sen) = simObservation(...
SimRob (rob), SimSen(sen), SimLmk) ;
end

end

o°
N

SLAM
for rob = [Rob.rob]

% Robot motion
Rob (rob) = motion (Rob (rob), Tim);

for sen = Rob(rob) .sensors
% Correct known landmarks

[Rob(rob), Sen(sen), Lmk, Obs(sen,:)] =
correctKnownLmks (. ..
Rob (rob) , Sen (sen) ,Raw(sen) ,Lmk,Obs (sen, :));

% Initialize new landmarks
[Lmk, Obs(sen, :)] = initNewLmks(...
Rob (rob) , Sen(sen) ,Raw (sen) ,Lmk,Obs (sen, :));
end

end

% 3. VISUALIZATION
drawMapFig (MapFig, Rob, Sen, Lmk, SimRob, SimSen);

for sen = [Sen.sen]

drawSenFig (SenFig (sen), Sen (sen), Raw(sen), Obs(sen, :));
end
drawnow;

end

userData.m: a script containing the data the user must enter to configure
the simulation. It is called by slamtb.m at the very first lines of code.

High-level functions exist to help initializing all the structured data.
They are called by slamtb just after userData:

createSLAMstructures ()
createSimStructures ()
createGraphicsStructures ()

Create SLAM structures
Create simulation structures
Create graphics structures

o o°

oP

The main purpose of these functions is to take the data from userData,
which is just what the user needs to enter, and create with them the more
complete structures that the program will use.
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4.2 Interface level

The interface level functions are located in the directory
SLAMtoolbox/InterfaceLevel/.

The interface level functions interface the high-level scripts and struc-
tured data with the low-level functions and the plain data. These functions
serve three purposes:

1. Check the type of structured data and select the appropriate methods
to manipulate them.

2. Split the structured data into smaller parts of plain data.

3. Call the low-level functions with the plain data (see Section 3.4), and
assign the outputs to the appropriate fields of structured data.

Interface-level functions perform the different simulation, SLAM, and
redraw operations. They are called inside the main loop:

% Simulator
simMotion ()
simObservation ()

o°

Simulate motions
Simulated observations

oP

% SLAM

motion () % Robot motion

correctKnownLmks () % EKF—update of known landmarks
initNewLmk () % Landmark initialization

% Visualization

drawMapFig () % Redraw 3D Map figure
drawSenFig () % Redraw sensors figures

Other intermediate-level functions create all graphics figures. They are
called by createGraphicsStructures.m:

createMapFig () % Create 3D Map figure
createSenFig() % Create all sensors' figures

A good example of interface function is simMotion.m, whose code is
reproduced in Fig. 22.
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function Rob = simMotion (Rob, Tim)
% SIMMOTION Simulated robot motion.

switch Rob.motion % check robot's motion model

case 'constVel'
Rob.state.x
Rob. frame.x
Rob.vel.x
Rob. frame

constVel (Rob.state.x,Rob.con.u, Tim.dt) ;
Rob.state.x(1:7);

Rob.state.x(8:13);
updateFrame (Rob. frame) ;

case 'odometry'

Rob. frame = odo3 (Rob. frame,Rob.con.u);
otherwise
error('??? Unknown motion model ''$s''.',6 Rob.motion);

end

Figure 22: The simMotion.m interface function. Observe that (1) the in-
terface function checks data types and selects different low-level functions
accordingly; (2) the structures are split into chunks of plain data before
entering the low-level functions; (3) in case 'constvel', frame.x is mod-
ified by the low-level motion functions, and we need a call to updateFrame ()
afterwards; (4) the low-level odometry function odo3 () already performs
frame update; (5) there is an error message for unknown motion models.
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4.3 Low level library

There are different directories storing a lot of low-level functions. Although
this directory arborescence is meant to be complete, you are free to add new
functions and directories (do not forget to add these new directories to the
Matlab path). The only reason for these directories to exist is to have the
functions organized depending on their utility.

The toolbox is delivered with the following directories:

DataManagement/ % Certain data manipulations
DetectionMatching/ % Features detection and matching
EKF/ % Extended Kalman Filter
FrameTransforms/ % Frame transformations

Rotations/ % Rotations (inside FrameTransforms/)
Graphics/ % Graphics creation and redrawing
Kinematics/ % Motion models
Lines/ % Line landmarks
Math/ % Some math functions
Observations/ % Observation models
Points/ % Point landmarks
Simulation/ % Methods exclusive to simulation
Slam/ % Low—level functions for EKF-SLAM

The functions contained in this directories take plain data as input, and
deliver plain data as output.

To explore the contents of the library, start by typing help DirectoryName
at the Matlab prompt.
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5 Developing new observation models

This section describes the necessary steps for creating new observation mod-
els any time a new type of sensor and/or a new type of landmark is consid-
ered. Please read ‘guidelines.pdf’ before contributing your own code.

Before you develop a new observation model, you must take care of the
following facts:

1. You need a direct observation model for observing known landmarks
and correcting the map, and an inverse observation model for land-
mark initialization.

2. The robot acts as a mere support for sensors. Normally, only its
current frame is of any interest. In some (rare) special cases, the
robot’s velocity may be of interest if the measurements are sensitive
to it (for example, when considering a sonar sensor with Doppler-effect
capabilities).

3. The sensor’s frame is specified in robot frame. It may be part of the
SLAM state vector.

4. The sensor contains other parameters. The number and nature of these
parameters depend on the type of sensor and cannot be generalized.
We have not considered these parameters as part of the SLAM state
vector, although this could be done. Most observation functions in the
toolbox already return the Jacobians with respect to these parameters.

5. The landmark has the main parameters in the SLAM vector, but it
may have some other parameters out of it.

6. The sensor may provide full or partial measurements of the landmark
state. In case of partial measurements, you have to provide a Gaussian
prior of the non-measured part for initialization.

5.1 Practical error-free procedure for the lazy-minded

To start the creation of a new model, simply edit userData.m and enter a
new string in Opt . init.initType (for example, enter the string 'newLin’
to create a new line. When creating a new landmark model, remember to
use strictly 6 characters, with the last 3 indicating either 'Pnt' or 'Lin'!.
Then execute slamtb. The program will fail exactly in the place where you
need to enter new code. Let me call this an entry point. Read the error
comment and check the existing code close to the entry point: get inspired
on it and you will soon know what to do, and how to do it. After adding
the code (and saving the corresponding file!), re-execute slamtb to advance
to the next entry point.
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For example, when entering 'newLin' in Opt.init.initType in userData.m,
the following error occurs:

??? Error using ==> initNewLlmk at 39
??? Unknown landmark type 'newLin'.

Error in ==> slamtb at 130
[Lmk,Obs (sen, :)] = initNewLmk(. ..

In this case, you just need to edit initNewLmk.m, go to line 39, and
add a new case 'newLin' entry within the switch Opt.init.initType
statement. Within this switch statement, you observe that the size of the
landmark parametrization is being defined. Enter a line of code with the
appropriate size; for example, if your new line parametrization contains 10
states, write

case 'newLin'
lmkSize = 10;

Then re-execute slamtb. You have advanced to the second entry point!!!

Unfortunately, some code you need to write is not as trivial as the ex-
ample above. The following paragraphs explain in more detail some of the
steps you need to perform.

5.2 Steps to incorporate new models

Once you decide to incorporate new models, follow these steps:

1. Write direct and inverse observation models for your landmark and
sensor. See Sections 5.3 and 5.4.

2. Edit userbata.m. Add a number of new landmarks in structure
World. Type help userData and explore the comments within its
code to learn how to achieve this.

3. Edit simObservation.m for simulating landmark measurements. Add
new case lines case 'my Sen' and case 'my Lmk', and write the
necessary code that calls the functions in your direct model. These
function calls do not request Jacobians.

4. Edit initNewLmk .m for landmark initialization. Add new case lines
case 'my Sen' and case 'my Lmk', and write the necessary code
that calls the functions in your inverse model. See that these function
calls request Jacobians.
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5. Edit correctKnownLmks.m for landmark corrections. Add new case
lines case 'my Sen' and case 'my Lmk', and write the necessary
code that calls the functions in your direct model. See that these
function calls request Jacobians. Name the return variable and Jaco-
bians exactly as in the other existing models: they are used later. See
Sections 5.3, 5.5 and 5.6.

6. Edit createMapFig.m and createSenFig.m for map and sensor fig-
ures. Add new switch—case entries and the methods to create the
desired graphics. See Section 5.7.

7. Edit drawMapFig.m and drawSenFig.m to redraw the new landmarks
in the map and sensor figures. Add new switch—case entries and
create the desired methods for showing the landmarks and associated
observations. See Section 5.7.

5.3 Direct observation model for map corrections

The observation operations are split into three stages: transformation to
robot frame, transformation to sensor frame, and projection into the sensor’s
measurement space. The model takes the general form e = h(Rf, Sf, Sp,
with Rf the robot frame, S£ the sensor frame, Sp the sensor parameters, 1
the landmark parameters, and e the expected measurement or projection
(in the EKF argot, e = h(x)).

We have basically two options for its implementation: building from
scratch or adapting an existing model.

5.3.1 Build model from scratch

Here is a simplified implementation:

function e = observationModel (Rf, Sf, Sp,1)
% IN — Rf: robot frame

Sf: sensor frame

Sp: sensor parameters

1l : landmark in world frame
OUT— e : projected magnitude

o° o0 o°

oe

lr = toFrame (Rf,1); % landmark in robot frame
ls = toFrame (Rs, 1lr); % landmark in sensor frame
e = projectToSensor(Sp,1ls); % projection to sensor's space

This shows that we need to create three functions for a direct observation
model: toFrame, projectToSensor and observationModel, whose names
will be properly particularized for the types of sensor and landmark of the
model.

This scheme must be enriched with two important capabilities, namely:
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e Jacobian matrices computation.
e Vectorized operation for multiple landmarks.

The following code exemplifies the direct measurement model for a pin-
hole camera mounted on a robot and observing Euclidean 3D points. Use
it as a guide for writing your own models. Notice the systematic use of the
chain rule for computing the Jacobians (see ‘guidelines.pdf’ for info on
the chain rule).

function [u, s, U.r, Us, Uk, Ud, U.1l] =
projEucPntIntoPinHoleOnRob (Rf, Sf, Spk, Spd, 1)
IN — Rf : robot frame

o°

% Sf : sensor frame

% Spk: pin—hole intrinsic parameters
% Spd: pin—hole distortion parameters
% 1l : landmark in world frame

% OUT— u : projected pixel

% s : non—measurable depth

o°

U_x: Jacobians

if nargout < 2 % No Jacobians requested
1r = toFrame (Rf,1); % lmk to robot frame
1ls toFrame (Sf, 1r); % lmk to sensor frame
[u, s] pinHole (1s,Spk,Spd); % lmk into measurement space

else % Jacobians requested

if size(l,2) == % single point
% Same functions with Jacobian output
[l1r, LR.r, LR_1] = toFrame (Rf,1);
[l1s, LS_.s, LS_1r] = toFrame(Sf,1lr);
[u,s,U.1ls,Uk,U.d] = pinHole(ls, Spk, Spd) ;

% Apply the chain rule for Jacobians

U.lr = U_.1lsxLS_1r;
Ur = U.lr*xLR.r;
U.,s = U.ls*LS_s;
U.l = U_.lrx*LR.1;
else
error ('??? Jacobians not available for multiple points.')

end
end

The model makes use of the functions toFrame () and pinHole (). The
first function is specific to the landmark type, while the second depends on
both the landmark type and the sensor type. We reproduce them here:

function [pf, PF_f, PF_p] = toFrame(F, pw)
$ IN — F : frame
% pw : point in world frame
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% OUT— pf : point in F—frame
% PF_%: Jacobians

s = size(p-W,2); % number of points in input matrix

if s==1 % one point
pf = F.Rtx(pw — F.t);

if nargout > 1 % Jacobians.
PF.t = —F.Rt;

sc = 2%F.Pcx(pw — F.t);

PFg = [...
sc(2) sc(l) —sc(4) sc(3)
sc(3) sc(4) sc(l) —sc(2)
sc(4) —sc(3) sc(2) sc(l)];

PFp = F.Rt;

PF_.f = [PF_t PF_q];

end

else % multiple points
pf = F.Rtx(pw — repmat (F.t,1,s));
if nargout > 1

error ('??? Jacobians not available for multiple points.

end
end

function [u, s, Up, Uk, U.d] = pinHole(p, k, d)

%$ IN — p : 3D point

% k : pin-hole intrinsic parameters
% d : pin-hole distortion parameters
% OUT— u : projected pixel

% S : non—measurable depth

o°

U_%x: Jacobians

oe

Point's depths
=p(3,:);

0]

if nargin < 3, d = []; end % Default is no distortion

if nargout < 2 % no Jacobians requested
u = pixellise(distort (project (p),d), k);

else % Jacobians

if size(p,2) == % p is a single 3D point
[up, UP_p] project (p);
[ud, UD_up, UD.d] distort (up,d);
[u, U_.ud, U._k] pixellise(ud, k);

Uu.d = U_ud * UD._d;
U_p = U.ud * UD_up * UP_p;
else % p is a 3D points matrix — no Jacobians possible
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error ('??? Jacobians not available for multiple points.')
end
end

5.3.2 Adapting an existing model

Adapting an existing model is very easy and interesting. We avoid errors
and save a lot of coding time. It is possible if we know the function that
transforms one model into another one. For example, if we already have the
observation model for Euclidean points, projEucPntIntoPinHoleOnRob (),
we just need the conversion function idp2euc () (see pag. 35), transforming
IDP points to Euclidean, and build the observation model as

function [u, s, Ur, Us, Uk, Ud, U.1l] =
projIdpPntIntoPinHoleOnRob (Rf, Sf, Spk, Spd, 1)

if nargout < 2 % no Jacobians requested

o°

first convert to the existing model's type

p = idp2euc(l);

% then apply the known model

e = projEucPntIntoPinHoleOnRob (Rf, Sf, Sp, p);
else % Jacobians requested

% first convert to the existing model's type
[p, P_-1] = idp2euc(l);

% second apply the known model
[u, s, Ur, Uss, Uk, Ud, Up] = .
projEucPntIntoPinHoleOnRob (Rf, Sf, Sp, p);

% finally apply the chain rule
Ul =Up * P_1;
end

5.4 Inverse observation model for landmark initialization

The inverse model works inversely to the direct one, with one important de-
tail: for sensors providing partial landmark measurements, a prior is needed
in order to provide the inverse function with the full necessary information.

The model takes the general form 1 = g(Rf, Sf, Sp, y, n), with
Rf the robot frame, S£ the sensor frame, Sp the sensor parameters, y the
measurement, n the non-measured prior, and 1 the retro-projected landmark
parameters. Here is a simplified implementation:
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function 1 = invObsModel (Rf, Sf, Sp, y, n)
IN — Rf: robot frame

Sf: sensor frame

Sp: sensor parameters

y : measurement

n : non—measured prior
OUT— 1 : obtained landmark

oe

d° o

oe

o0 o°

ls = retroProjectFromSensor (Sp, e, n); % lmk in sensor frame
lr = fromFrame (Sf, 1s); % lmk in robot frame
1l = fromFrame (Rf, 1lr); % lmk in world frame

In this case, only Jacobians computation need to be added, as it is not
likely that we need to retro-project several points at a time (contrary to
what happens with the direct models).

The following code exemplifies the inverse measurement model for a pin-
hole camera mounted on a robot and observing 3D points, rendering 3D
landmarks parametrized as inverse-depth [3]. The inverse depth is precisely
the non-measured part n, and is provided as a prior with a separate input.?

function [idp, IDP.rf, IDP.sf, IDP_sk, IDP._sc, IDP_u, IDP.n] =
retroProjIdpPntFromPinHoleOnRob (Rf, Sf, Sk, Sc, u, n)
IN — Rf : robot frame
Sf : sensor frame
Sk : sensor intrinsic parameters
Sc : sensor distortion correction parameters

o°

o® o° oP

y : measurement
n : non-measured prior

OUT—- idp: retro—projected inverse—depth point
IDP_%: Jacobians

d° o° o°

o°

if nargout == 1 % No Jacobians requested
idps = invPinHoleIdp(u,n, Sk,Sc) ;
idpr = fromFrameldp(Sf, idps) ;
idp = fromFrameIdp (Rf, idpr) ;

else % Jacobians requested
% function calls
[idps, IDPS_u, IDPS_n, IDPS_sk, IDPS_sc] =
invPinHoleIdp(u, n, Sk, Sc) ;
[idpr, IDPR.sf, IDPR._idps] = fromFrameldp (Sf, idps) ;
[idp, IDP.rf, IDP_idpr] = fromFrameIldp (Rf, idpr) ;

% The chain rule

IDP_idps = IDP._idpr * IDPR._idps; % intermediate result
IDP_sk = IDP_idps * IDPS_sk ;
IDP_sc = IDP_idps * IDPS._sc ;
IDP.u = IDP_idps * IDPS_u ;
IDP.n = IDP_idps * IDPS.n ;

2For speed reasons, the function retroProjIdpPntFromPinHoleOnRob is implemented
somewhat differently in the toolbox.
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‘end

5.5 Landmark reparametrization

In case you are using landmarks with a parametrization that is especial-
lized for initialization, such as Inverse Depth points, you must consider
reparametrizing them to more economical forms, such as Euclidean points,
once they have converged to stable 3D positions. Read [2] if you do not know
what I am talking about. In this case, write reparametrization functions and
include them in the code.

Here is an example of the reparametrization function:

function [p,P.idp] = idp2euc(idp)
% IDP2EUC Inverse Depth to Euclidean point conversion.

x0 = idp(1:3,:); % origin

py = idp(4:5,:); % pitch and roll
r = idp(6,:); % inverse depth
if size(idp,2) == 1 % one only Idp

[v,V_py]l = py2vec(py); % unity vector
P = x0 + v/r;

if nargout > 1 % jacobians

P._x = eye(3);

P.v = eye(3)/r;

P.r = —v/r"2;

Ppy = PvsVpy;

P_idp = [P.x P py P_r];

else % A matrix of Idps

v = py2vec(py); % unity vector
p = x0 + v./repmat(r,3,1);

if nargout > 1
error ('??? Jacobians not available for multiple landmarks.'
end
end

To include this function in the code, edit the function reparametrizeLmk (),
create a new case in the landmark’s type switch, and add your code as
appropriated.
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Another example of reparametrization is hmg2euc (). It transforms ho-
mogeneous points to the Euclidean space.

5.6 Landmark parameters out of the SLAM map

There may be some landmark parameters that are not part of the stochastic
state vector estimated by SLAM. The number and nature of these parame-
ters depend on the landmark type and cannot be generalized.

The direct and inverse observation models must be complemented with
the appropriate methods to initialize and update these parameters. In the
toolbox, we use the functions initLmkParams and updateLmkParams.

Examples of such parameters are:

e The endpoints of segment landmarks. See [8, 17] for examples of set-
ting and updating. Initialization and updating of segment endpoints
for lines of the type Plucker are supported in this toolbox. Check
functions retroProjPlkEndPnts and updatePlkLinEndPnts.

e The landmark’s appearance information, used in appearance-based
feature matching. See [4, 15] for examples on setting and using these
parameters. See [9] for an example of updating them.

5.7 Graphics

Each new landmark needs its own drawing methods and, possibly, dedicated
graphic data structures.

5.7.1 Graphic handles

Graphics are managed with Matlab handles. If you do not know about
handles, we give here a basic approach. In brief, when you create a graphics
object you assign it a handle that will allow you to manipulate the object.?
After that, to redraw the object you only need to update the values in
that handle. (You update the values that have changed, and leave the rest
unchanged. The alternative to plot at each frame the whole graphic is not
time efficient.) Here is an example of a moving graphic using handles:

% create a fancy figure for our demo

f1 = figure(l); figure handle 'f1l'

set (f1l, 'renderer', 'opengl') % we modify the figure's renderer
ax = gca ; cla ; axis equal ; axes handle 'ax'

o°

o°

3Yes, handles are there always to manipulate objects. As well as handle comes from
the English root ‘hand’, the word manipulate comes from the Latin root ‘manus’ for hand,
and means “handle or control (a mechanism, tool, etc.), typically in a skillful manner”
(Oxford). It is no language abuse to say that a cup’s handle allows us to manipulate the
cup without getting burned.
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axis([-1.1 1.1 —1.1 1.1])

% we create here the graphics object: a single—point line

angleO = 0;

objecthandle = line( ...
cos (angle0), sin(angle0),
'parent’', ax,
'marker’', 'o',
'color’', 'r',
'markersize’, 10);

for angle = angle0:0.01: (angleO+2xpi)
% we change only its position
set (objecthandle,
'xdata', cos(angle),
'ydata', sin(angle));
drawnow
end

We basically use two types of graphics objects: 1ine and patch. To
know the properties of each object you can access to, simply create a de-
fault object with e.g. h = line (), obtaining the line’s handle h, and then
type set (h). You will get a list of all possible properties with their default
values. To know the properties’s values, type get (h). To modify a partic-
ular property, type set (h, 'propertyName', value). To read a particular
value, use get (h, 'propertyName').

5.7.2 Graphic functions

In the toolbox, objects are crated in createMapFig and createSenFig,
invoked by createGraphicsStructures before the main loop. They are
updated in the third part of the loop, with drawMapFig and drawSenFig.
Visit these functions, add new switch—case entries for your objects, and
code the necessary methods.

Bear in mind that, while new landmark parametrizations require new
drawing methods for the 3D part (the map figure), once they are projected
into a particular sensor they may end up having the same Obs structure as
other existing landmarks. For instance, Euclidean, IDP and homogeneous
points all project into 2D points in the image. This means that we will find
3D-drawing functions drawEucLmk, drawIdpLmk and drawHmgLmk, but we
will find only one function drawObsPnt for all of their 2D projections.

The following examples show how to redraw a 3D ellipsoid belonging to
an Euclidean landmark, and how to redraw a projected 2D segment in a
pin-hole image. Use them as templates for your own methods. The first
function drawEucPnt draws a Euclidean 3D point in the Map figure:

function drawEucPnt (MapFig, Lmk, color)
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% DRAWEUCPNT Draw Euclidean point landmark in MapFig.

global Map
posOffset = [0;0;.2];

% Mean and covariance

x = Map.x(Lmk.state.r);

P = Map.P (Lmk.state.r,Lmk.state.r);

% draw

drawPnt (MapFig.Lmk (Lmk.1lmk) .mean, X, color.mean)
drawEllipse (MapFig.Lmk (Lmk.1lmk) .ellipse, x, P, color.ellip)
drawLabel (MapFig.Lmk (Lmk.1lmk) .label, x+posOffset, num2str (Lmk.i

d) )

It calls drawPnt, drawEllipse and drawLabel which are used to draw a
labeled Gaussian 3D point. We show here drawEllipse:

function drawEllipse(h, x, P, c, ns, NP)
DRAWELLIPSE Draw 2D ellipse or 3D ellipsoid.
IN — h : ellipse handle

d° o° o°

X : mean
% P : covariance
C : color

d° o°

ns : number of sigmas
NP : number of points to draw the ellipse

o0

if nargin < 6, NP = 10;
if nargin < 5, ns = 3;
end
end
if numel (x) == % 2D ellipse

[X,Y] = cov2elli(x,P,ns,NP);
set (h, 'xdata', X, 'ydata',¥Y, 'vis', 'on'")

elseif numel (x) == % 3D ellipsoid
[X,Y,Z2] = cov3elli(x,P,ns,NP);
set (h, 'xdata',X, 'ydata', ¥, 'zdata',Z, 'vis', 'on")

else
error ('??? Size of vector ''x'' not correct.')
end

if nargin > 3 && ~isempty(c)
set (h, 'color',c)
end

This other function draws an observed line in the pin-hole sensor figure:

function drawObsLin (SenFig, Obs, colors, showEllip)
% DRAWOBSLIN Draw an observed line on the pinHole sensor figure.
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posOffset = 8;
% the measurement:
if Obs.measured

y = Obs.meas.y;

drawSeg (SenFig.measure (Obs.1lmk) ,y,colors.meas)

% the label
c = (y(1:2)+y(3:4))%0.5; % segment's center
v (y(1:2)—y(3:4)); % segment's vector

o°

n normvec([—v(2);v(1)]);
pos = c + nx*posOffset;
drawLabel (SenFig.label (Obs.1lmk), pos, num2str (Obs.lid))
else
set (SenFig.measure (Obs.1lmk), 'vis', 'off');
set (SenFig. label (Obs.1lmk), 'vis', 'off');
end

segment's normal vector

% the expectation
xlim = get (SenFig.axes, 'xlim');
ylim = get (SenFig.axes, 'ylim');
imSize = [x1im(2);ylim(2)];
s = trimHmgLin (Obs.exp.e, imSize);
if ~isempty(s)
% mean
drawSeg (SenFig.mean (Obs.1lmk), s, colors.mean)
% ellipses
if showEllip
drawEllipse (SenFig.ellipse (Obs.1lmk,1),
Obs.par.endp (1) .e,
Obs.par.endp (1) .E,
colors.ellip)

drawEllipse (SenFig.ellipse (Obs.1lmk, 2),
Obs.par.endp(2) .e,
Obs.par.endp(2) .E,
colors.ellip)

end

else % not visible
set (SenFig.mean (Obs.1lmk), 'vis', 'off');
set (SenFig.ellipse(Obs.1lmk, :), 'vis', 'off');

end
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6 Extensions

You want to extend the capabilities of this toolbox. Here are some sugges-
tions:

Combined points and lines: SLAM using both points and lines. This
should be relatively easy to implement, but at this time the toolbox
does not support it. If you want to try, check and modify the feature
detection and landmark initialization sections (all in initNewLmks .m).
Updates and rendering should work without problems.

Multi-map: Multi-map operation for consistent large-scale SLAM. Basi-
cally, you should surround the main loop in slamtb.m with another
loop managing the closing and creation of maps and performing the
multi-map loop closures.

Other sensors: Use of sensors other than the pin-hole camera. This is a
matter of building new observation models as explained in Section 5.

Real images: Use of real data, avoiding all the simulation part. Refer to
the following section for general guidelines.

6.1 Extension with real images

The toolbox does not support working with real images; you need to imple-
ment it.

Basically, you should remove the whole SIMULATION section in slamtb
and substitute it by a few lines of code loading an image into Raw (sen) .data
setting Raw(sen) .type to 'image'. Then, you need to code the fea-
ture detection and matching functions for real images, inserting them in
initNewLmk.m and matchFeature.m respectively.

6.1.1 Loading, storing and displaying images

To load an image into the Raw structure, you can simply do:

.m

.img,

Raw (sen) .data.img = imread (imageFileName) ;

where imageFileName can be built at each frame with e.g.

imageFileName = sprintf ('PATH/image%05d.png', currentFrame) ;

However, it might be more efficient to declare the image global, like:

global Img
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[...]

Img{sen} = imread(imgFileName) ;

and ignore Raw(sen) .data.img. This will speed up your algorithm. I
advise you to use a cell array Img{sen} to be able to handle more than one
camera automatically, even if the images from each camera have different
sizes.

You may want to be sure that the image is grayscale, with just one
channel, and with just 8 bits depth. You can convert the image to any
format you want using standard Matlab functions.

Regarding the graphics part, the toolbox already initializes a image han-
dler in SenFig(sen) .img, and updates it at each frame with the contents
of Raw (sen) .data.img. To update it using a global image Img{sen}, edit
drawSenFig.m and modify the appropriate code.

6.1.2 Some image processing tools

For what concerns the image processing, the toolbox has a few functions,
located in directory DetectionMatching/, that might help you in doing
this without the need of the Matlab’s Image Processing toolbox:

harris strongest.m gives you the strongest Harris point in an image.
You normally give it a fraction of the image where you know no land-
marks are tracked, and ask the function to give you one point there.
This is used for landmark detection just before initialization.

[point,sc] = harris_strongest (im, sigma,mrg, edgerej)

pix2patch.m extracts a rectangular image patch centered on a pixel. In
order to speed up some computations of the ZNCC, it is useful to
define the patch structure as follows: patch.I is the patch image (of
9 x 9 to 15 x 15 pixels as detailed below). patch.SI is the sum of all
pixels. And patch.SII is the sum of the squares of the pixels. This
function does the job for you, and it already accepts working with
global images Img.

ptch = pix2patch(I,pix,hsize,vsize)

zncce.m is the zero-mean normalized correlation coefficient, used for feature
matching. It basically compares 2 patches and gives you a score of
similarity in the range [-1 1]. Other correlation scores are ssd.m and

census.m.
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sc = zncec(I,J,SI,SII,SJ,Sdd)

imresize2.m is used to modify the reference patch before correlation, so
that the appearance of the reference patch resembles at maximum that
of the feature to match in the current image. You use the estimated
rotation and distance variation to infer zoom and rotation parameters
for patch resizing. This function may need some improvements to work
fully satisfactorily, but it is good enough for a start. If you have the
Image processing toolbox, you can try imtransform.m instead.

out_im = imresize2 (im, H)

patchResize.m uses imresize2.m to create a modified version of the
structure patch.

rpatch = patchResize (opatch, r)

6.1.3 The active-search algorithm

The work of implementing SLAM with real images is long. I recommend you
read the literature about ”active search” techniques [4, 6, 15]. The active
search algorithm takes care of the following:

1. At initialization time (inside initNewLmk .m, and then in detectFeature.m)

(a) Define a grid in the image plane, for example 5x5 cells dividing
the image in equal subimages. I recommend you store this grid
somewhere in the Sen structure so that you have easy access to
it. You create the grid at startup, in createSensors.m. You
also need to define the user-configurable grid characteristics be-
forehand in userData.m, in the Sensor{i} section.

(b) Project all mapped landmarks into the image. For each projected
landmark (only the mean is needed), set the grid cell where the
mean has been projected to true or 'occupied'.?

(c) When done, randomly select one only cell which is not 'occupied'.
Extract the image of that cell.

(d) Detect the best Harris point in this image cell, with harris_strongest.m.
Set the resulting pixel pix as the landmark measurement with

4You may want to relegate this peace of code to the correctKnownLmks .m func-
tion, as in this function all landmarks are being projected already. This way you save
computation time, but the resulting code is less compact. It’s up to you.
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meas.y = pix and meas.R = pixnoise”2x*eye (2). The tool-

box will use this measurement for landmark initialization. To en-

sure a proper graphics rendering, set also the expectation exp.e = meas.y
and exp.E = meas.R.

(e) Check if the detected point is good enough by putting a threshold
on the Harris score returned. This ”feature quality threshold”
needs to be created beforehand. A good place to store it is in
Obs.init.featQualityTh, defined in userData.m.

(f) If successful, store a 9 x 9 to 15 x 15 pixels patch around the de-
tected point, and the current camera position and orientation, in
an "appearance” variable app. This will become the landmark’s
descriptor or ”signature” for future matchings (on successful ini-
tialization, the toolbox will store it for you in Lmk.sig).

(g) Create a unique identifier for the new landmark (a number).
Name it newId. The toolbox will assign it to Lmk and Obs struc-
tures for you.

(h) Proceed to initialization (this is already coded in initNewLmk .m).

basically, you enter code la—I1g in the case 'image' in detectFeature
within initNewLmk .m.

function [Lmk,Obs] = initNewLmk (Rob, Sen, Raw, Lmk, Obs, Opt)
% [...]

% Feature detection
switch Raw.type
case {'simu', 'dump'}
[newId, app, meas, exp, inn] = simDetectFeat(...

Opt.init.initType,
[Lmk ( [Lmk .used]) .id],
Raw.data,
Sen.par.pixCov,
Sen.par.imSize);

case 'image' % <—— INSERT YOUR FUNCTION HERE
% NYI : Not Yet Implemented. Create detectFeat.m and chll:
% [newId, app, meas, exp, inn] = detectFeat(...);

error('??? Raw type ''$s'' not yet implemented.', Raw.type);

2. At correction time (inside correctKnownLmks .m, and then inside matchFeature.m)

(a) Project all mapped landmarks (this is already done).
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(b) Select the set of landmarks to observe (done).
(¢) For each selected observation, proceed as follows.

(d) Define a rectangular search region based on the projection mean
Obs.exp.x and the 3-sigma ellipse Obs.inn.P. The mean is the
center, and the square roots of the diagonals of the covariance are
the sigmas, o, and o,. You need to build a rectangle that goes
+30 at each side of the center.

(e) Using the current camera position and orientation, and the stored
position and orientation in Lmk.sig.pose0, compute a zooming

factor and a rotation to be applied to the stored patch Lmk . sig.patch
before scanning. Store this predicted appearance in Obs . app . pred.

(f) Scan the rectangular region for the modified patch, using znce.m
as the preferred ZNCC correlation score. Store the best match
patch in Obs. app.curr, and the score in Obs.app.sc. Store the

best pixel as the measurement, in Obs .meas.y. Set Obs.measured = true.

(g) On completion, test if the ZNCC score is greater than a threshold
(0.95 minimum). This ”appearance score threshold” needs to be

created beforehand. A good place to store it is in Obs . correct . appScTh,

defined in userData.m. If successful, set Obs.matched = true.

(h) Test the Mahalanobis distance between the expectation and the

measurement to be smaller than a threshold. If passed, set Obs.inlier = true.

This is already coded in correctKnownLmks .m.

(i) Proceed with landmark correction (already done).

basically, you need to code 2c—2g inside matchFeature.m. Use
switch / case statements to select which kind of processing you
will do depending on the Raw.type data being 'image', 'simu',
etc.

function Obs = matchFeature (Sen, Raw, Obs)
s [...]

switch Raw.type
case {'simu', 'dump'}

S [...1]

case 'image'
error ('??? Feature matching for Raw data type ''%$s'' n
% TODO: the 'image' case <—— INSERT YOUR CODE HERE

°

end

ot implemented yet.',

Within matchFeature.m, do not forget to set the flags .measured, .matched

in structure Obs: they are important for the correct development of
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the algorithm, especially in the graphics section. The landmark event
counters .nSearch, nMatch, nInlier in structure Lmk are already
updated by the toolbox.

It is long but doable. Good luck!
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7 Bibliography selection

The following publications list is of mandatory reading for anyone wishing
to understand/use/contribute to this toolbox.

One article by myself and colleagues demonstrating performances of
several landmark parametrizations for monocular EKF-SLAM: [16].

Articles by myself and colleagues about monocular SLAM and the
extensions to multi-camera: [14, 13, 15, 17].

My thesis [12], but not in all its extension. Read Chapter 6, and
particularly section 6.5 on Active Search.

Articles by Andrew J. Davison, the most important contributor to
monocular EKF-SLAM, and his colleagues at Oxford, London and
Cambridge: [4, 5, 6, 9, 7].

Articles from the University of Zaragoza, mostly on EKF-SLAM. Land-
mark initialization using inverse-depth parametrization, and multi-
map SLAM for large environments: [10, 2, 3, 11].

If this list is too long for your available time or patience, try this reduced
version of just 3 titles:

1.

2.

3.

Davison on monocular SLAM [4].
Sola on landmark parametrizations for points and lines [16].

Sola on multi-camera SLAM [15].
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