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1 Measure Theory

1.3. Construction of measures

Problem 1.3.1 Let µ∗ be an outer measure in X and let H be a µ∗-measurable set. Let us
consider the restriction µ∗0 of µ∗ to P(H): µ∗0(A) = µ∗(A ∩H) for all A ⊂ X.

i) Check that µ∗0 is an outer measure on H.

ii) Check that M ⊆ H is µ∗0-measurable if and only if it is µ∗-measurable.

Solution: i) a) µ∗0(∅) = µ∗(∅) = 0. b) If A ⊆ B then A∩H ⊆ B ∩H and µ∗0(A) = µ∗(A∩H) ≤
µ∗(B ∩ H) = µ∗0(B). c) Let {Aj}∞j=1 be a collection of subsets of X. Then, as µ∗ is an outer
measure,

µ∗0

( ∞⋃
j=1

Aj

)
= µ∗

(( ∞⋃
j=1

Aj
)
∩H

)
= µ∗

( ∞⋃
j=1

(Aj ∩H)
)
≤
∞∑
j=1

µ∗(Aj ∩H) =

∞∑
j=1

µ∗0(Aj) .

ii) Let M⊂ P(X ) be the σ-algebra of µ∗-measurable sets and M0 ⊂ P(H) be the σ-algebra of
µ∗0-measurable sets.
(⇒) Let M ∈M0, M ⊆ H and let A ⊆ X. Then µ∗0(A ∩M) + µ∗0(A ∩M c) = µ∗0(A) and so

µ∗(A ∩M ∩H) + µ∗(A ∩M c ∩H) = µ∗(A ∩H).

As M ⊆ H, we have that H ∩M c = H \M = (X \M) ∩H and so

µ∗(A ∩M) + µ∗(A ∩ (X \M) ∩H) = µ∗(A ∩H) ≤ µ∗(A) ,

since A ∩H ⊆ A and µ∗ is an outer measure. But A ∩ (X \M) = A \M and so µ∗(A ∩M) +
µ∗(A \M) ≤ µ∗(A). Since µ∗ is an outer measure and (A ∩M) ∪ (A \M) = A the opposite
inequality is trivial. Hence

µ∗(A ∩M) + µ∗(A \M) = µ∗(A) , ∀A ⊆ X =⇒ M ∈M .

(⇐) Let M ∈M, M ⊆ H. If A ⊆ H, then µ∗(A ∩M) + µ∗(A ∩ (X \M)) = µ∗(A) and so

µ∗(A ∩M ∩H) + µ∗(A ∩ (X \M) ∩H) = µ∗(A ∩H) .

But this is equivalent to µ∗0(A ∩M) + µ∗0(A ∩ (H \M)) = µ∗0(A), and therefore M ∈M0.

Problem 1.3.2

i) Let X be any set. Let us define µ∗ : P(X) :−→ [0, 1] by µ∗(∅) = 0, µ∗(A) = 1, if A 6= ∅,
A ⊆ X. Check that µ∗ is an outer measure and determine the σ-algebraM of measurable
sets.

ii) Do the same if µ∗(∅) = 0, µ∗(A) = 1, if A 6= ∅, A ( X, µ∗(X) = 2.

Hints: i) If ∅ ( M ( X, then the definition of µ∗-measurable set fails with E = X. ii) If
card (X) > 2 and {x, y} ⊂ M ( X the definition fails with E = M c ∪ {x}; if M = {x} the
definition fails with E = {x, y} ( X.
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Solution: i) a) By definition µ∗(∅) = 0. b) Let A ⊆ B then, if A = ∅, we have 0 = µ∗(A) ≤
µ∗(B) and, if A 6= ∅, we have µ∗(A) = 1 = µ∗(B). c) Let {Aj}∞j=1 be a collection of subsets of
X. Then

µ∗
( ∞⋃
j=1

Aj

)
=

{
0, if Aj = ∅ ∀j
1, otherwise

≤
∞∑
j=1

µ∗(Aj) .

Hence µ∗ is an outer measure. The σ-algebra of µ∗-measurable sets is

M = {M ⊂ X : µ∗(E) ≥ µ∗(E ∩M) + µ∗(E \M) , ∀E ⊆ X} .

But, taking E = X, we have: 1 = µ∗(X) < 1 + 1 = µ∗(X ∩M) + µ∗(X \M) if M 6= ∅, X and
so only ∅ and X can be µ∗- measurable. Trivially ∅, X ∈M. Hence M = {∅, X}.
ii) Like in i) parts a) and b) are trivial; c) Given a collection {Aj}∞j=1 of subsets of X we have

µ∗
( ∞⋃
j=1

Aj

)
=


0, if Aj = ∅ ∀j
1, if ∅ ( ∪∞j=1Aj ( X

2, otherwise

≤
∞∑
j=1

µ∗(Aj) .

Hence µ∗ is again an outer measure.

If card (X) = 2, X = {x, y} and M = {x} or M = {y} it is easy to check that µ∗(E) ≥
µ∗(E∩M) +µ∗(E∩M c) with the four possibilities E = ∅, E = {x}, E = {y} or E = X. Hence
M ∈M and M = P(X) in this case.

Now, let us suppose that card (X) > 2 and ∅ (M ( X:
• If M = {x}, taking E = {x, y} we have that E ∩M = {x}, E ∩M c = {y} and so µ∗(E ∩M) +
µ∗(E ∩M c) = 1 + 1 = 2 > 1 = µ∗(E). Hence M /∈M.
• If {x, y} ⊆M ( X, taking E = M c ∪ {x} we have, since E ( X (because y /∈ E):

µ∗(E ∩M) + µ∗(E ∩M c) = µ∗({x}) + µ∗(M c) = 1 + 1 = 2 > 1 = µ∗(E) .

Hence M /∈M. Therefore M = {∅, X} in this case.

Problem 1.3.3 Show that a finitely additive outer measure is countably additive.

Hint:
⋃n
j=1Aj ⊆

⋃∞
j=1Aj for all n.

Solution: Let {Aj}∞j=1 be a collection of disjoint subsets of X and A =
⋃∞
j=1Aj . We must prove

that µ∗(A) =
∑∞

j=1 µ
∗(Aj). As µ∗ is an outer measure, the inequality ≤ holds. But, for any

N ∈ N, by monotonicity

µ∗(A) ≥ µ∗
( N⋃
j=1

Aj

)
=

N∑
j=1

µ∗(Aj)

since µ∗ is finitely additive. By letting N →∞ we obtain the ≥ inequality.

Problem 1.3.4∗ Let µ∗ be an outer measure on X and letM be the collection of µ∗-measurable
sets. Prove Caratheodory’s theorem following the steps:

a) If µ∗(M) = 0 then M ∈M.

b) If M ∈M then also M c = X \M ∈M.

c) If M,N ∈M then M ∪N , M ∩N , M \N ∈M.
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d) If {Mj}∞j=1 is a sequence of disjoints in M, then prove by induction on n that

µ∗(A ∩ (∪n1Mj)) =
n∑
j=1

µ∗(A ∩Mj) , ∀A ⊂ X , ∀n ∈ N .

e) If {Mj}∞j=1 is a sequence of disjoints in M and M := ∪∞n=1Mj then

µ∗(A ∩M) =
∞∑
j=1

µ∗(A ∩Mj) , ∀A ⊂ X .

f) If {Mj}∞j=1 is a sequence of disjoints in M, them M := ∪∞n=1Mj ∈M.

g) M is a σ-algebra and µ∗|M is a measure.

h) (X,M, µ∗) is a complete measure space.

Hints: c) A∩(M∪N) = (A∩M)∪(A∩M c∩N). d) By c) ∪nj=1Mj ∈M and so µ∗(A∩(∪n+1
j=1Mj)) =

µ∗(A∩(∪n+1
j=1Mj)∩(∪nj=1Mj))+µ∗(A∩(∪n+1

j=1Mj)\(∪nj=1Mj)) = µ∗(A∩(∪nj=1Mj))+µ∗(A∩Mn+1).
e) It is a consequence of a). f) Use that ∪nj=1Mj ∈M by c), and so µ∗(A) = µ∗(A∩∪(∪nj=1Mj))+
µ∗(A \ (∪nj=1Mj)); use now parts d) and e). g) If {Aj} is any collection of subsets in M, then
the sets Mj = Aj \ (A1 ∪ · · · ∪An−1 ∈M are disjoints and ∪∞j=1Aj = ∪∞j=1Mj .

Problem 1.3.5∗ Let E ⊂ P(X) be a semialgebra and let µ0 : E :−→ [0,∞] be a countable
additive set function.

a) Prove that µ0 is monotone: If E,F ∈ E , E ⊆ F , then µ0(E) ≤ µ0(F ).

b) Prove that µ0 is countably sub-additive: If E = ∪∞i=1Ei with Ei, E ∈ E , then

µ0(E) ≤
∞∑
i=1

µ0(Ei) .

c) Let us define, for all A ⊆ X,

µ∗(A) = inf
{ ∞∑
i=1

µ0(Ei) : Ei ∈ E , A ⊆ ∪∞i=1Ei

}
.

d) Prove that µ∗ is an outer measure (and so, by Caratheodory’s Theorem, the collection A
of µ∗-measurable sets is a σ-algebra and µ = µ∗|A is a complete measure).

e) Prove that E ⊆ A and that µ∗ is an extension of µ0: µ
∗(E) = µ0(E) for all E ∈ E .

Hints: a) If E1 ⊂ E2 then, as E is semialgebra, E2 = E1 ∪ Ec1 = E1 ∪ F1 ∪ · · ·Fn with Fj ∈ E
and disjoint. b) Consider the disjoint sets Di := Ei \ (E1 ∪ · · · ∪ Ei−1) = Ei ∩ (∩n−1i=1 E

c
i )

and observe that, as E is semialgebra, we have that Eci = Fi1 ∪ · · · ∪ Fik(i) with Fij ∈ E and
disjoint. c) Given ε > 0 and sets {Ai}∞i=1 such that

∑∞
i=1 µ

∗(Ai) < ∞, choose for each i a
collection {Eij}∞j=1 such that

∑∞
j=1 µ0(Eij) < µ∗(Ai) + ε/2i. Then A := ∪iAi ⊆ ∪i ∪j Eij and

µ∗(A) ≤
∑

i µ
∗(Ai) + ε. e) Given E ∈ E , A ⊂ X with µ∗(A) < ∞ and ε > 0 there exists

{Ei} ⊂ E such that A ⊂ ∪iEi and
∑

i µ0(Ei) < µ∗(A) + ε; also Ec = F1 ∪ · · · ∪ Fn with Fj ∈ E
and disjoint. Hence, Ei = (Ei ∩ E) ∪ (Ei ∩ F1) ∪ · · · ∪ (Ei ∩ Fn), a disjoint union of sets.
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Problem 1.3.6 A semiopen interval in R is an interval of type ∅, [a, b), (−∞, b), [a,∞) or
(−∞,∞) = R. A semiopen interval in Rn is a set of type I = I1 × I2 × · · · × In, where each Ij
is a semiopen interval in R. Let E be the collection of semiopen intervals in Rn. Prove that E
is a semialgebra.

Solution: By definition ∅ ∈ E . Secondly, if I = I1× I2×· · ·× In ∈ E , J = J1× I2×· · ·×Jn ∈ E ,
then I∩J = (I1∩J1)×(I2∩J2)×· · ·×(In∩Jn) ∈ E since it is easy to check that the intersection
of two semiopen intervals in R is again a semiopen interval.
Finally: In R it is easy to check that if I ∈ E , then Ic = I ′ ∪ I ′′ with I ′, I ′′ disjoint semiopen
intervals. In Rn (n ≥ 2), if I = I1 × · · · × In ∈ E , then

Ic = (Ic1 × R× · · · × R) ∪ (R× Ic2 × · · · × R) ∪ · · · ∪ (R× · · · × R× Icn)

= ((I ′1 ∪ I ′′1 )× R× · · · × R) ∪ (R× (I ′2 ∪ I ′′2 )× · · · × R) ∪ · · · ∪ (R× · · · × R× (I ′n ∪ I ′′n))

= (I ′1 × R× · · · × R) ∪ (I ′′1 × R · · · × R) ∪ · · · ∪ (R× · · ·R× I ′n) ∪ (R× · · · × R× I ′′n) = ∪2nα=1I
α ,

where the Iα’s are disjoint and Iα ∈ E , for all α.

Problem 1.3.7 Show that a subset B ⊆ R is Lebesgue-measurable if and only if

m∗(I) = m∗(I ∩B) +m∗(I ∩Bc) ,

for every open interval I ⊆ R.

Hint: Given E ⊂ R with m∗(E) <∞ and ε > 0, consider a sequence of intervals {In} such that
E ⊂ ∪nIn and

∑
nm(In) < m∗(E) + ε and observe that, as each In is Lebesgue-measurable,

m(In) = m∗(In) = m∗(B ∩ In) +m∗(Bc ∩ In).

Solution: If B is Lebesgue-measurable then the equality holds for all E ⊂ R and so also holds for
any interval. Reciprocally, let us suppose that the inequality is true for any interval. We must
prove that m∗(E) ≥ m∗(E ∩B) +m∗(E ∩Bc) for all E ⊆ R since the other inequality trivially
holds since m∗ is an outer measure. We may assume that m∗(E) < ∞ since in other case the
inequality is obvious. Given ε > 0, let {In} be a sequence of intervals such that E ⊂ ∪nIn
and

∑
nm(In) < m∗(E) + ε. Then, as the intervals In are Lebesgue-measurable, using our

hypothesis, and the subadditivity and monotonicity of µ∗:

m∗(E) > −ε+

∞∑
n=1

m(In) = −ε+

∞∑
n=1

m∗(In)

= −ε+
∞∑
n=1

(
m∗(B ∩ In) +m∗(Bc ∩ In)

)
≥ −ε+m∗

( ∞⋃
n=1

(B ∩ In)
)

+m∗
( ∞⋃
n=1

(Bc ∩ In)
)

= −ε+m∗
(
B ∩

( ∞⋃
n=1

In
))

+m∗
(
Bc ∩

( ∞⋃
n=1

In
))

≥ −ε+m∗(B ∩ E) +m∗(Bc ∩ E) .

By letting ε→ 0+ we obtain that m∗(E) ≥ m∗(E ∩B) +m∗(E ∩Bc).
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Problem 1.3.8∗

a) Prove that (Rn,M,m) is translations invariant:

A ∈M , a ∈ Rn =⇒ a+A ∈M and m(a+A) = m(A) .

b) Let (Rn,M, µ) be a translations invariant measure space with µ a Radon measure (µ(K) <
∞ for each compact set K). Prove that there exists k ≥ 0 such that µ = km.

Hints: a) Consider the measure µ(B) = m(a+B) for B ∈ B(Rn) and observe that m(a+ I) =
m(I) for each semi-interval I. Hence µ(I) = m(I) for I semi-interval. Apply Caratheodory-
Hopf’s extension theorem. b) Let k = µ([0, 1] × · · · × [0, 1]) and prove that µ(I) = km(I), for
each semi-interval I = [0, r1/q1]× · · · × [0, rn/qn] with ri/qi ∈ Q. Using now an approximation
argument conclude that the same is true for any semi-interval in Rn. Finally apply Caratheodory-
Hopf’s extension theorem.

Problem 1.3.9∗ Let g : Rn −→ Rn be an isometry for the Euclidean norm. that is to say
‖g(x) − g(y)‖ = ‖x − y‖ for all x, y ∈ Rn. It is known that any isometry is a composition of a
translation and an orthogonal transformation. Recall that U : Rn −→ Rn is orthogonal if U is
linear and UUT = I where I is the identity matrix.
Prove that given any Lebesgue-measurable set M , then g(M) is also a Lebesgue-measurable set
and m(g(M)) = m(M).

Hints: By problem 1 it suffices to prove it for an orthogonal transformation U . As U is an
homeomorphism (bijective and continuous with continuous inverse) then U sends Borel sets into
Borel sets. Define a measure µ by µ(A) = m(U(A)) for A ∈ B(Rn), where U is orthogonal,
and prove that µ is translations invariant. Hence µ(A) = km(A) for any A ∈ B(Rn) and for
some constant k. But, if B = {x : ‖x‖ < 1} then prove that µ(B) = m(B) and so k = 1.
Finally, if M ∈ M then M = A ∪ N with A ∈ B(Rn) and N ⊂ C ∈ B(Rn), m(C) = 0. Hence
U(M) = U(A) ∪ U(N) with U(A) ∈ B(Rn) and U(N) ⊂ U(C) ∈ B(Rn), m(U(C)) = m(C) = 0.

Problem 1.3.10∗ Let T : Rn −→ Rn be a linear transformation. Prove that given any
Lebesgue-measurable set, then T (M) is also a Lebesgue-measurable set and

m(T (M)) = |detT |m(M).

Hints: If detT = 0 is trivial because in this case T (Rn) is contained in an (n − 1)-dimensional
hyperplane which has zero n-dimensional Lebesgue measure. If detT 6= 0, then T is bijective
and can be decomposed as T = UDV with U, V orthogonal transformations and D a linear
transformation whose matrix is diagonal. As orthogonal transformations are isometries, by
problem 1.3.9, it suffices to prove it for D. Let λ1, . . . , λn be the elements of the diagonal of D. If
I = [a1, b1)×· · ·×[an, bn) is a semi-interval in Rn, thenD(I) = [λ1a1, λ1b1)×· · ·×[λnan, λnbn) and
so m(D(I)) = λ1 · · ·λnm(I). Define the measure µ(M) = 1

λ1···λn m(D(M)). By Caratheodory-
Hopf’s extension theorem we have that µ = m. Finally, observe that detT = detD = λ1 · · ·λn.

Problem 1.3.11∗ Let g : R −→ R be an increasing function. Prove that there exists a unique
Radon measure µ : B(R) −→ [0,∞] such that

µ([a, b)) = g(b−)− g(a−) , ∀ [a, b) ∈ E .

Here g(x−0 ) denotes the left limit of g at the point x0. This measure µ = µg is called the
Borel-Stieltjes measure with distribution function g.
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Hint: Prove that µ is countably additive on the semi-intervals: if [a, b) = ∪∞j=1[aj , bj) then

g(b−)− g(a−) =
∑∞

j=1 g(b−j )− g(a−j ). Then, apply Caratheodory-Hopf’s extension theorem.

Problem 1.3.12 Let µ : B(R) −→ [0,∞] be a Radon measure. Prove that there exists an
increasing and left-continuous function g : R −→ R such that µ = µg. Besides, g is unique
unless by adding constants.

Hint: Define g(t) = µ([0, t]) for t ≥ 0 and g(t) = −µ([t, 0)) for t < 0 and apply Caratheodory-
Hopf’s extension theorem.

Solution: We define g(t) = µ([0, t]) for t ≥ 0 and g(t) = −µ([t, 0)) for t < 0. Then, g is
increasing:

0 < t1 < t2 =⇒ [0, t1) ⊂ [0, t2) =⇒ g(t1) ≤ g(t2) ,

t1 < t2 < 0 =⇒ [t1, 0) ⊃ [t2, 0) =⇒ −µ([t1, 0)) ≤ −µ([t2, 0)) =⇒ g(t1) ≤ g(t2) ,

t1 < 0 < t2 =⇒ g(t1) ≤ 0 ≤ g(t2) .

Secondly, g is left-continuous: Given t ∈ R, let {sn} ⊂ R with sn ↗ t. If t > 0, then

g(t) = µ([0, t)) = µ
( ∞⋃
n=1

[0, sn)
)

= lim
n→∞

µ([0, sn)) = lim
n→∞

g(sn) ,

and, if t ≤ 0, since µ is a Radon measure (and so µ([sn, 0)) <∞):

g(t) = −µ([t, 0)) = −µ
( ∞⋂
n=1

[sn, 0)
)

= − lim
n→∞

µ([sn, 0)) = lim
n→∞

g(sn) .

Finally, let us see that µ = µg:

0 < a < b =⇒ µ([a, b)) = µ([0, b) \ [0, a)) = µ([0, b))− µ([0, a)) = g(b)− g(a) = g(b−)− g(a−),

a < b < 0 =⇒ µ([a, b)) = µ([a, 0) \ [b, 0)) = µ([a, 0))− µ([b, 0)) = −g(a) + g(b) = g(b−)− g(a−),

a < 0 < b =⇒ µ([a, b)) = µ([a, 0) ∪ [0, b)) = µ([a, 0)) + µ([0, b)) = −g(a) + g(b) = g(b−)− g(a−).

Therefore µ([a, b)) = µg([a, b)) for all semiopen interval and so µ = µg by Caratheodory-Hopf’s
extension theorem. Finally, let us suppose that g, h : R −→ R are increasing and left continuous
and µg = µh: Let c = g(0)− h(0), then as g(t)− g(0) = µg([0, t)) = µh([0, t)) = h(t)− h(0), we
conclude that g(t)− h(t) = c and therefore, g is unique unless by adding constants.

Problem 1.3.13 Let g : R −→ R be an increasing function and let µg be the corresponding
Borel-Stieltjes measure with distribution function g. Prove that:

a) µg({x}) = g(x+)− g(x−).

b) µg({x}) = 0 if and only if g is continuous at x.

c) µg([a, b]) = g(b+)− g(a−).

d) µg((a, b)) = g(b−)− g(a+).

e) µg((a, b]) = g(b+)− g(a+).

f) If I ⊂ R is an open interval, then µg(I) = 0 if and only if g is constant on I.
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Solution: a) µg({x}) = µg(∩n[x, x + 1
n)) = limn→∞ µg([x, x + 1

n))) = limn→∞ g((x + 1
n)−) −

g(x−) = limn→∞ g(x+ 1
n)− g(x−) = g(x+)− g(x−).

b) µg({x}) = 0 ⇐⇒ g(x+) = g(x−) ⇐⇒ g is continuous at x.
c) µg([a, b])=µg([a, b)∪{b}) = µg([a, b))+µg({b}) = g(b−)−g(a−)+g(b+)−g(b−) = g(b+)−g(a−).
d) µg((a, b))=µg([a, b)\{a}) = µg([a, b))−µg({a}) = g(b−)−g(a−)−g(a+)+g(a−) = g(b−)−g(a+).
e) µg((a, b])=µg([a, b]\{a}) = µg([a, b])−µg({a}) = g(b+)−g(a−)−g(a+)+g(a−) = g(b+)−g(a+).
f) (⇐) If g(t) = const. ∀ t ∈ I = (a, b), then µg(I) = g(b−)− g(a+) = const.− const. = 0.
(⇒) If g(t) 6= const., then ∃s, t ∈ I with g(s) < g(t) and so g(a+) ≤ g(s) < g(t) ≤ g(b−) ⇒
µg((a, b)) > 0.

Problem 1.3.14

a) Let us consider the function

F (x) =


0 if x < 1
x if 1 ≤ x < 3
4 if x ≥ 3 .

Let µF be the Borel-Stieltjes measure with distribution function F . Calculate:

µF ({1}), µF ({2}), µF ({3}), µF ((1, 3]), µF ((1, 3)), µF ([1, 3]), µF ([1, 3)).

b) Give an example of a distribution function F such that

µF ((a, b)) < F (b)− F (a) < µF ([a, b]) , for some a and b.

Solution: a) µF ({1}) = F (1+) − F (1−) = 1, µF ({2}) = F (2+) − F (2−) = 0, µF ({3}) =
F (3+) − F (3−) = 1, µF ((1, 3]) = F (3+) − F (1+) = 3, µF ((1, 3)) = F (3−) − F (1+) = 2,
µF ([1, 3]) = F (3+) − F (1−) = 4, µF ([1, 3)) = F (3−) − F (1−) = 3. b) It holds for the function
F in a), since F (3)− F (1) = 4− 1 = 3.

Problem 1.3.15 Let F (x) be the distribution function on R given by

F (x) =


0 if x ∈ (−∞,−1)
1 + x if x ∈ [−1, 0)
2 + x2 if x ∈ [0, 2)
9 if x ∈ [2,∞) .

If µF is the Borel-Stieltjes measure with distribution function F , calculate the measure µF of
the following sets: {2}, [−1/2, 3), (−1, 0] ∪ (1, 2), [0, 1/2) ∪ (1, 2], A = {x ∈ R : |x|+ 2x2 > 1}.

Solution: µF ({2}) = F (2+) − F (2−) = 3, µF ([−1/2, 3)) = F (3−) − F (−1/2−) = 17/2,
µF ((−1, 0] ∪ (1, 2)) = F (0+)− F (−1+) + F (2−)− F (1+) = 5, µF ([0, 1/2) ∪ (1, 2]) = F (1/2−)−
F (0−) +F (2+)−F (1+) = 29/4, µF (A) = µF ((−∞,−1/2)∪ (1/2,∞)) = F (−1/2−)−F (−∞) +
F (+∞)− F (1/2+) = 29/4.

Problem 1.3.16 Let µ be the counting measure on R. Let us fix A ⊂ R, and let us define
ν(B) = µ(B ∩A) for all B ⊂ R.

a) If A = {1, 2, 3, . . . , n, . . .} is ν a Borel-Stieltjes measure? If the answer is affirmative, find
the distribution function.

b) And if A = {1, 12 ,
1
3 , . . . ,

1
n , . . .}?
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Solution: a) Yes, since µ is a Radon measure because µ([a, b]) = #{n ∈ N : a ≤ n ≤ b} < ∞;
F (x) = 0 if x < 0, F (x) = [x] if x ≥ 0.
b) No, since µ gives infinite measure to some compact intervals: µ([0, ε]) = #{n ∈ N : 1/n ≤
ε} =∞, for all ε > 0.

Problem 1.3.17 Let (X,A, µ) be a measure space and let Φ : X −→ Y be a mapping. We
define the image space measure (Y,B, ν) as

B = Φ(A) := {B ⊆ Y : Φ−1(B) ∈ A}

and ν = Φ(µ) : B −→ [0,∞] given by ν(B) = µ(Φ−1(B)) for all B ∈ B.
Prove that (Y,B, ν) is a measure space and it is complete when (X,A, µ) is.

Solution: a) ν(∅) = µ(Φ−1(∅)) = µ(∅) = 0.
b) If {Bj}∞j=1 ⊂ B is a collection of disjoint subsets of Y , then {Φ−1(Bj)}∞j=1 ⊂ A is a collection
of disjoint subsets of X and as µ is a measure:

ν
( ∞⋃
j=1

Bj

)
=µ
(
Φ−1

( ∞⋃
j=1

Bj
))

=µ
( ∞⋃
j=1

Φ−1(Bj)
)

=

∞∑
j=1

µ(Φ−1(Bj))=

∞∑
j=1

ν(Bj).

Finally, if (X,A, µ) is complete and N ⊆ B ∈ B with ν(B) = 0 then Φ−1(N) ⊆ Φ−1(B) ∈ A
and µ(Φ−1(B)) = ν(B) = 0 and so Φ−1(N) ∈ A and µ(Φ−1(N)) = 0. Hence N ∈ B and
ν(N) = µ(Φ−1(N)) = 0. Hence (Y,B, ν) is also complete.

Problem 1.3.18

a) Let g : I −→ R be a continuous and strictly increasing function. As g is injective it
has a continuous inverse g−1. Prove that µg = g−1(m), that is to say that the Borel-
Stieltjes measure with distribution function g coincides with the image measure of Lebesgue
measure under g−1.

b) Let g : (0,∞) −→ R be the function g(t) = log t. Prove that µg = g−1(m) = em is
invariant under dilations.

Hints: a) Prove that both measures coincide for semi-intervals [a, b) and apply Caratheodory-
Hopf’s extension theorem. b) Use part a) and the fact that Lebesgue measure is translation
invariant. Alternatively, it can be also proved by using Caratheodory-Hopf’s extension theorem.

Solution: a) Let [a, b) ∈ E , the semialgebra of semiopen intervals in R. Then, as g is increasing,
g([a, b)) = [g(a), g(b)) and so,

g−1(m)([a, b))) = m(g([a, b))) = m([g(a), g(b))) = g(a)− g(b) = µg([a, b)) ,

since g is continuous. By Caratheodory-Hopf’s extension theorem we obtain that µg = g−1(m).
b) Let E be a borelian set in (0,∞) and let λ > 0. Then, using a) and the fact that Lebesgue
measure is translation invariant:

µg(λE) = g−1(m)(λE) = m(g(λE)) = m(log(λE))

= m(log λ+ logE) = m(logE) = m(g(E)) = g−1(m)(E) = µg(E).

Problem 1.3.19 Let Bn = {x ∈ Rn : ‖x‖ < 1} be the unit ball of Rn and Sn−1 = {x ∈ Rn :
‖x‖ = 1} be the unit sphere. Let us consider the projection π : Bn \ {0} −→ Sn−1 given by
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π(x) = x/‖x‖. The (n − 1)-dimensional Lebesgue measure on Sn−1 is defined as σ = n · π(m),
that is to say

σ(U) = n ·m(π−1(U)) , for all U ∈ B(Sn−1) .

Prove that σ is invariant under rotations.

Hint: Use problem 1.3.9.

Solution: That σ is invariant under rotations means that σ(T (U)) = σ(U) for any orthogonal
transformation T : Rn −→ Rn. But using problem 1.3.9, we have that

σ(T (U)) = n ·m(π−1(T (U))) = n ·m(T (π−1(U))) = n ·m(π−1(U)) = σ(U).

Problem 1.3.20 Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces. Let us consider the
product set X × Y = {(x, y) : x ∈ X, y ∈ Y }. The product σ-algebra A ⊗ B is the σ-algebra
generated by the set E = {A × B : A ∈ A, B ∈ B}. Prove that there exists a unique measure
µ⊗ ν : A⊗ B −→ [0,∞] such that

(µ⊗ ν)(A×B) = µ(A) ν(B) , for all A ∈ A , B ∈ B .

Hint: Prove that E is a semi-algebra and that µ ⊗ ν is countably additive on E . Then apply
Caratheodory-Hopf’s extension theorem.

Solution: Let us check first that E is a semialgebra: a) ∅ = ∅×∅ ∈ E . b) Let A×B,A′×B′ ∈ E .
Then A,A′ ∈ A and B,B′ ∈ B and, since A and B are σ-algebras, A ∩A′ ∈ A and B ∩B′ ∈ B.
Hence (A × B) ∩ (A′ × B′) = (A ∩ A′) × (B ∩ B′) ∈ E . c) Let A × B ∈ E . Then (A × B)c =
(Ac×Y )∪ (A×Bc) and Ac×Y,A×Bc ∈ E (since A and B are σ-algebras) and they are disjoint.
Let us define now the set-function α : E −→ [0,∞] given by α(A × B) = µ(A) ν(B). It is not
difficult to check that α is countably additive. Besides, as µ and ν are σ-finite we have that:
X = ∪nXn with µ(Xn) < ∞, X1 ⊆ X2 ⊆ · · · and Y = ∪nYn with ν(Yn) < ∞, Y1 ⊆ Y2 ⊆ · · · .
Hence X × Y = ∪n(Xn × Yn) with α(Xn × Yn) = µ(Xn)ν(Yn) <∞ and so α is also σ-finite. As
a consequence of Caratheodory-Hopf’s extension theorem we deduce that there exists a unique
measure µ ⊗ ν defined on the product σ-algebra A ⊗ B := σ(E) such that µ ⊗ ν|E = α, that is
to say such that (µ⊗ ν)(A×B) = µ(A) ν(B) for all A ∈ A and B ∈ B.


