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2 Integration Theory

2.3. Integration on product spaces

Problem 2.3.1 Prove that f(x) = e−x
2 ∈ L1(R) and calculate I =

∫
R
e−x

2
dx.

Hint: x2 ≥ x for x ≥ 1. Relate I2 with an integral in R2. Calculate this last integral using polar
coordinates.

Solution: As f is continuous in [0, 1] we have that f is bounded in [0, 1] and so f ∈ L1[0, 1].
On the other hand, if x ≥ 1 then x ≤ x2 and so e−x

2 ≤ e−x ∈ L1[1,∞) hence, f ∈ L1[0,∞).
Since f is an even function, it belongs to L1(R). To compute the value of I we apply first
Tonelli-Fubini’s theorem:

I2 =
(∫

R
e−x

2
dx
)(∫

R
e−y

2
dy
)

=

∫∫
R×R

e−(x
2+y2) dx dy ,

and now we change to polar coordinates and use the monotone convergence theorem:

I2 =

∫ 2π

0

∫ ∞
0

e−r
2
r dr dθ = 2π

∫ ∞
0

r e−r
2
dr = 2π lim

N→∞

∫ N

0
r e−r

2
dr

= 2π lim
N→∞

[e−r2
−2

]r=N
r=0

= lim
N→∞

π
(
1− e−N2)

= π =⇒ I =
√
π .

Problem 2.3.2 Let A = [0, 1]× [0, 1].

a) Prove that the function f(x, y) = |x−y|
(x+y)3

is not integrable in A.

b) Find out if the function f(x, y) = 1√
xy is integrable in A and, in that case, calculate the

integral
∫∫

f(x, y) dxdy.

c) Calculate
∫∫
A x [1 + x + y] dxdy where [t] denotes the integer part of t, discussing before

the integrability of the function.

Hint: a) Use the change of variables x = y + t and use Fubini’s theorem.
Solutions: a) Using Tonelli-Fubini’s theorem and then using the change of variables x = y + t
we obtain:∫∫

A

|x− y|
(x+ y)3

dx dy =

∫ 1

0

(∫ 1

0

|x− y|
(x+ y)3

dx
)
dy =

∫ 1

0

(∫ 1−y

−y

|t|
(t+ 2y)3

dt
)
dy

=

∫ 1

0

(∫ 0

−y

−t
(t+ 2y)3

dt+

∫ 1−y

0

t

(t+ 2y)3
dt
)
dy .

But, decomposing into simple fractions:∫
t

(t+ 2y)3
dt =

∫
(t+ 2y)− 2y

(t+ 2y)3
dt =

∫ ( 1

(t+ 2y)2
− 2y

(t+ 2y)3

)
dt = − 1

t+ 2y
+

y

(t+ 2y)2
+ c ,

and so, f is not integrable in A since
∫ 1
0

1
y dy =∞ (see problem 2.1.8, part b3)):∫∫

A

|x− y|
(x+ y)3

dx dy =

∫ 1

0

([ 1

t+ 2y
− y

(t+ 2y)2

]t=0

t=−y
+
[
− 1

t+ 2y
+

y

(t+ 2y)2

]t=1−y

t=0

)
dy

=

∫ 1

0

( 1

2y
− 1

y
− 1

4y
+

1

y
+

1

2y
− 1

1 + y
+

y

(1 + y)2
− 1

4y

)
dy

=

∫ 1

0

( 3

4y
− 1

1 + y
+

y

(1 + y)2

)
dy =∞ .
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b) Using again Tonelli-Fubini’s theorem:∫∫
A

1
√
xy

dx dy =

∫ 1

0

(∫ 1

0

1
√
xy

dx
)
dy =

∫ 1

0

1
√
y

[
2
√
x
]x=1

x=0
dy

= 2

∫ 1

0

1
√
y
dy = 2

[
2
√
y
]y=1

y=0
= 2 · 2 = 4 <∞ ,

and so f is integrable in A.
c) f(x, y) = x [1 + x+ y] is bounded and almost everywhere continuous and A is bounded, so f
is Lebesgue-integrable; Now, given k ∈ Z, [1 + x+ y] = k if and only if k ≤ x+ y < k + 1, but
if (x, y) ∈ A then 0 ≤ x+ y ≤ 2. Hence, using Tonelli-Fubini’s theorem:∫∫

A
x [1 + x+ y] dx dy =

∫∫
(x,y)∈A
0≤x+y≤1

x dx dy +

∫∫
(x,y)∈A
1≤x+y≤2

2x dx dy

=

∫ 1

0

(∫ 1−x

0
x dy

)
dx+

∫ 1

0

(∫ 1

1−x
2x dy

)
dx

=

∫ 1

0
x(1− x) dx+

∫ 1

0
2x(1− (1− x)) dx

=
[x2

2
− x3

3

]x=1

x=0
+
[2x3

3

]x=1

x=0
=

1

2
− 1

3
+

2

3
=

5

6
.

Problem 2.3.3 Using Tonelli-Fubini’s theorem to justify all steps, evaluate the integral∫ 1

0

∫ 1

y
x−3/2 cos

πy

2x
dx dy .

Hint: Prove first that g(x, y) = x−3/2 cos πy2x ≥ 0 on A = {(x, y) : 0 ≤ y ≤ x ≤ 1}. Then apply
Tonelli-Fubini’s theorem.

Solution: Let g(x, y) = x−3/2 cos πy2x . If (x, y) ∈ A, then πy
2x ∈ [0, π2 ] and so g(x, y) ≥ 0. Hence,

we can apply Tonelli-Fubini’s theorem:∫ 1

0

∫ 1

y
x−3/2 cos

πy

2x
dx dy =

∫ 1

0

(∫ x

0
x−3/2 cos

πy

2x
dy
)
dx

=

∫ 1

0
x−3/2

(∫ x

0
cos

πy

2x
dy
)
dx =

∫ 1

0
x−3/2

[2x

π
sin

πy

2x

]y=x
y=0

dx

=

∫ 1

0
x−3/2

2x

π
dx =

2

π

∫ 1

0
x−1/2dx =

2

π

[x1/2
1/2

]x=1

x=0
=

4

π
.

Problem 2.3.4 Let us consider the measure space (N,P(N), µ), with µ the counting measure.

a) Prove that µ⊗ µ is the counting measure on (N× N,P(N× N)).

b) Let us define the function

f(m,n) =


1 if m = n ,
−1 if m = n+ 1 ,
0 otherwise.

Check that
∫
N(
∫
N f(m,n) dµ(m)) dµ(n), and

∫
N(
∫
N f(m,n) dν(n)) dµ(m) exist and are dis-

tinct and that
∫
N×N |f(m,n)| d(µ⊗ µ)(m,n) =∞. What is the relevance of this result?
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c) Do the same for the function

g(m,n) =


1 + 2−m if m = n ,
−1− 2−m if m = n+ 1 ,
0 otherwise.

Solution: a) It is clear that P(N)⊗ P(N) = P(N× N) and that

(µ⊗ µ)({(m,n)}) = (µ⊗ µ)({m} × {n}) = µ({m})µ({n}) = 1 · 1 = 1 .

Hence, µ⊗ µ is the counting measure in N× N.

b) Now ∫∫
N×N
|f | d(µ⊗ µ) =

∞∑
n=1

m=n+1∑
m=n

1 =∞ =⇒ f /∈ L1(µ⊗ µ) .

Also, for fixed n,∫
N
f(m,n) dµ(m) =

∞∑
m=1

f(m,n) = f(n, n) + f(n+ 1, n) = 1 + (−1) = 0 ,

and, for fixed m,∫
N
f(m,n) dµ(n) =

∞∑
n=1

f(m,n) =

{
f(1, 1) , if m = 1 ,

f(m,m− 1) + f(m,m) , if m ≥ 2 ,
=

{
1 , if m = 1 ,

0 , if m ≥ 2 .

Hence, ∫
N

(∫
N
f(m,n) dµ(m)

)
dµ(n) =

∞∑
n=1

∞∑
m=1

f(m,n) =
∞∑
n=1

0 = 0

and ∫
N

(∫
N
f(m,n) dµ(n)

)
dµ(m) =

∞∑
m=1

∞∑
n=1

f(m,n) = 1 + 0 + · · ·+ 0 + · · · = 1 .

Therefore, the iterated integrals do not coincide and so Fubini’s theorem can not be applied.
The reason is that f /∈ L1(µ ⊗ µ). This shows that the condition of integrability in Fubini’s
theorem is necessary.

c) For fixed n we have:∫
N
f(m,n) dµ(m) =

∞∑
m=1

f(m,n) = f(n, n) + f(n+ 1, n) = 1 + 2−n − 1− 2−n−1 = 2−n−1 ,

and, for fixed m,∫
N
f(m,n) dµ(n) =

∞∑
n=1

f(m,n) =

{
f(1, 1) , if m = 1 ,

f(m,m− 1) + f(m,m) , if m ≥ 2 ,

=

{
1 + 2−1 , if m = 1 ,

−1− 2−m + 1 + 2−m , if m ≥ 2 .
=

{
3/2 , if m = 1 ,

0 , if m ≥ 2 .
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Hence,∫
N

(∫
N
f(m,n) dµ(m)

)
dµ(n) =

∞∑
n=1

∞∑
m=1

f(m,n) =

∞∑
n=1

2−n−1 =
1

2

∞∑
n=1

1

2n
=

1

2
· 1 =

1

2

and ∫
N

(∫
N
f(m,n) dµ(n)

)
dµ(m) =

∞∑
m=1

∞∑
n=1

f(m,n) =
3

2
+ 0 + · · ·+ 0 + · · · = 3

2
.

Hence, the iterated integrals do not coincide also in this case. Therefore, Fubini’s theorem can
not be applied and since (N,P(N), µ) is σ-finite the only possibility is that f /∈ L1(µ⊗ µ) (as it
can be easily verified).

Problem 2.3.5 Let (X,A) be a measurable space an let f : X −→ [0,∞] be a positive
A-measurable function. Let

Af = {(x, y) ∈ X × R : 0 ≤ y ≤ f(x)}.

a) Prove that Af ∈ A⊗ B(R).

b) Given a σ-finite measure µ in (X,A) prove that
∫
X f dµ coincides with the product measure

π = µ⊗m of the set Af , where m denotes Lebesgue measure in R.

Hints: a) Prove it first for simple functions s(x) in X and later for positive functions in X. b)
Use the monotone convergence theorem.

Solution: a) If f = χE is a characteristic function then Af =
(
E × [0, 1]

)
∪
(
(X \ E) × {0}

)
∈

A ⊗ B(R). Similarly, if s =
∑m

j=1 cjχEj
is a positive simple function (cj ≥ 0) with Ej ∈ A

pairwise disjoint sets, we have that

As =
m⋃
j=1

(
Ej × [0, cj ]

)
∪
(
(X \ Ej)× {0}

)
∈ A⊗ B(R) .

Finally, if f ≥ 0 then, let {sn}∞n=1 be an increasing sequence of simple functions such that

0 ≤ s1 ≤ s2 · · · ≤ sn ≤ · · · ↗ f , as n→∞ .

Then

Af ={(x, y) ∈ X×R : 0 ≤ y ≤ f(x)}=

∞⋃
j=1

{(x, y) ∈ X×R : 0 ≤ y ≤ sj(x)}=

∞⋃
j=1

Asj ∈A⊗B(R) .

b) If s =
∑m

j=1 cjχEj
is a positive simple function (cj ≥ 0) with Ej ∈ A pairwise disjoint sets,

we have that

(µ⊗m)(As) =
m∑
j=1

(µ⊗m)(Ej×[0, cj ])+(µ⊗m)(X\Ej)×{0}) =
m∑
j=1

cjµ(Ej)+0 =

∫
X
s dµ , (1)

since m({0}) = 0.
If f ≥ 0, let {sn}∞n=1 be an increasing sequence of positive measurable functions with sn ↗ f as
n→∞. Then, since Af is equal to the increasing union of the sets Asj , and using (1) and the
monotone convergence theorem:

(µ⊗m)(Af ) = lim
n→∞

(µ⊗m)(Asn) = lim
n→∞

∫
X
sn dµ =

∫
X
f dµ .
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Problem 2.3.6 Let X = Y = [0, 1], A1 , A2 = B([0, 1]), µ the Lebesgue measure on A1, ν
the counting measure on A2. In the measure space (X × Y,A1 ⊗A2, µ⊗ ν) we consider the set
V = {(x, y) : x = y}. Check that V ∈ A1 ⊗A2. However∫

Y
dν

∫
X
χV dµ = 0 ,

∫
X
dµ

∫
Y
χV dν = 1 .

What hypothesis of Fubini’s theorem does not hold?

Hint: If Vn = (I1 × I1) ∪ · · · ∪ (In × In) ∪ {(1, 1)} being Ij = [ j−1n , jn) j = 1, 2, . . . , n, then
V = ∩∞1 Vn .
Solution: For each n ∈ N let Vn = (I1 × I1) ∪ · · · ∪ (In × In) ∪ {(1, 1)} where Ij = [ j−1n , jn)
j = 1, 2, . . . , n. Then it is clear V ⊂ Vn but it is also easy to check that V = ∩∞n=1Vn. Hence, as
Vn is a union of products of semiopen intervals and a point we have that Vn ∈ A1 ⊗A2 for all
n ∈ N and therefore also V ∈ A1 ⊗A2.
On the other hand,∫

Y
dν

∫
X
χV dµ =

∫
Y

(∫ 1

0
χV (x, y) dx

)
dν(y) =

∫
Y
m({y}) dν(y) =

∫
Y

0 dν(y) = 0 ,

and ∫
X
dµ

∫
Y
χV dν =

∫ 1

0

(∫
Y
χV (x, y) dν(y)

)
dx =

∫ 1

0
ν({x}) dx =

∫ 1

0
1 dx = 1 .

Therefore the iterated integrals do not coincide and so we can not apply Fubini’s theorem. Since
χV ≥ 0 the only possible reason is that (Y,B([0, 1]), ν) is not σ-finite and this example shows
that the σ-finiteness hypothesis is necessary in Tonelli-Fubini’s theorem.

Problem 2.3.7 Let (Xk,Ak, µk) be σ-finite measure spaces, k = 1, 2 . . . , n. Let fk : Xk −→
[0,∞] be positive Ak-measurable functions, k = 1, 2 . . . , n.

a) Prove that the product function h = f1f2 . . . fn : X1 × · · · ×Xn −→ [0,∞] given by

h(x1, . . . , xn) = f1(x1)f2(x2) · · · fn(xn)

is A1 ⊗ · · · ⊗ An-measurable and that∫
X1×···×Xn

(f1f2 . . . fn) dµ1 ⊗ · · · ⊗ dµn =
n∏
i=1

∫
Xi

fi dµi . (2)

b) Use this formula to compute the integral

∫
Rn

e−‖x‖
2
dx .

c) Calculate again this integral using the formula for radial functions in Problem 2.2.26 and
from this obtain the value of Ωn = m(Bn), the n-dimensional Lebesgue measure of the
unit ball Bn of Rn.

d) Prove that part a) also holds when the functions f1, . . . , fk are not positive but fk ∈ L1(µk),
k = 1, 2 . . . , n.

Hints: a) Consider the functions Fi(x1, x2, . . . , xn) := fi(xi) and use Fubini’s theorem for positive
functions. b) Use a) and problem 2.3.1. c) Use Euler’s Gamma function and that xΓ(x) =
Γ(x+ 1). d) Use Fubini’s theorem.
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Solution: a) For k = 1, . . . , n, let Fi : X1×X2× · · ·Xn −→ [0,∞] given by Fk(x1, x2, . . . , xn) :=
fk(xk). Then, if V ⊆ [0,∞] is open, then

F−1k (V ) = X1 × · · · ×Xk−1 × f−1k (V )×Xk+1 × · · · ×Xn ∈ A1 ⊗ · · · ⊗ An ,

since f−1k (V ) ∈ Ak because fk is Ak-measurable by hypothesis. Finally, as h = F1F2 · · ·Fn,
we obtain that h is A1 ⊗ · · · ⊗ An-measurable because h is a product of measurable functions.
Finally, (2) follows from Tonelli-Fubini’s theorem.
b) Using (2) and problem 2.3.1 we have∫

Rn

e−‖x‖
2
dx =

∫
R×···×R

e−x
2
1e−x

2
2 · · · e−x2n dx1 . . . dxn

=

n∏
k=1

∫
R
e−x

2
k dxk =

(∫
R
e−x

2
dx
)n

= (
√
π)n = πn/2.

c) Using the formula in problem 2.2.26 we have∫
Rn

e−‖x‖
2
dx = nΩn

∫ ∞
0

e−r
2
rn−1 dr =

1

2
nΩn

∫ ∞
0

un/2−1e−u du ,

where we have done the change of variable u = r2. Using now the Euler Gamma-function
Γ(x) =

∫∞
0 ux−1e−u du, we obtain that:∫

Rn

e−‖x‖
2
dx =

1

2
nΩn Γ

(n
2

)
.

From this and the formula obtained in b) we deduce that

1

2
nΩn Γ

(n
2

)
= πn/2 =⇒ Ωn =

2πn/2

nΓ
(
n
2

) =
πn/2

Γ
(
n
2 + 1

) .
where we have used the well-known formula Γ(x+ 1) = xΓ(x).
d) As |h| = |f1| · · · |fn| and since fk ∈ L1(µk), k = 1, 2 . . . , n., we obtain from a) that h ∈
L1(µ1 ⊗ · · · ⊗ µn):∫
X1×···×Xn

|h| dµ1⊗· · ·⊗dµn =

∫
X1×···×Xn

|f1| |f2| · · · |fn| dµ1⊗· · ·⊗dµn =
n∏
i=1

∫
Xi

|fi| dµi <∞ .

Hence, we can apply now Fubini’s theorem to obtain (2) for general functions f1, . . . , fn.

Problem 2.3.8 Let us consider the Lebesgue measure on R2. Let A = [a, b] × [c, d] and let f
be continuous on A. Prove that∫

A
f dm =

∫ b

a
dx

∫ d

c
f(x, y) dy =

∫ d

c
dy

∫ b

a
f(x, y) dx .

Solution: Since f is continuous in the compact set A, we have that f is bounded in A and so,
as A has finite Lebesgue measure, f is Lebesgue-integrable in A. The formula is now a direct
consequence of Fubini’s theorem.
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Problem 2.3.9 Let

f(x, y) =

{
x2−y2

(x2+y2)2
, (x, y) 6= (0, 0) ,

0 , (x, y) = (0, 0) .

Check that ∫ 1

0
dx

∫ 1

0
f(x, y) dy =

π

4
,

∫ 1

0
dy

∫ 1

0
f(x, y) dx = −π

4
.

What hypothesis of Fubini’s theorem does not hold?

Solution: The iterated integrals are∫ 1

0
dx

∫ 1

0
f(x, y) dy =

∫ 1

0
dx

∫ 1

0

∂

∂y

( y

x2 + y2

)
dy =

∫ 1

0

∫ 1

0

[ y

x2 + y2

]y=1

y=0
dx =

∫ 1

0

dx

1 + x2
=
π

4

and∫ 1

0
dx

∫ 1

0
f(x, y) dy =

∫ 1

0
dy

∫ 1

0

∂

∂x

( −x
x2 + y2

)
dx =

∫ 1

0

∫ 1

0

[ −x
x2 + y2

]x=1

x=0
dy =

∫ 1

0

dx

1 + x2
= −π

4
.

Hence, Fubini’s theorem can not be applied. The reason is, a fortiori, that f /∈ L1([0, 1]× [0, 1]).

Problem 2.3.10 Let us define the function f : [−1, 1]× [−1, 1] −→ R given by

f(x, y) =

{
xy

(x2+y2)2
, (x, y) 6= (0, 0) ,

0 , (x, y) = (0, 0) .

Check that ∫ 1

−1
dx

∫ 1

−1
f(x, y) dy =

∫ 1

−1
dy

∫ 1

−1
f(x, y) dx ,

but however f is not integrable in [−1, 1]× [−1, 1]. Why is relevant this exercise?

Solution: Since f(x, y) is odd in both variables and the domain is symmetric with respect to
both variables we have that both iterated integrals vanish. However, f /∈ L1([−1, 1]× [−1, 1]):∫ 1

−1

∫ 1

−1
|f(x, y)| dx dy ≥

∫ 1

0

∫ 2π

0

|r2 sin θ cos θ|
r4

r dr dθ = 8π
(∫ 2π

0
sin θ cos θdθ

)(∫ 1

0

dr

r

)
=∞.

This fact shows that Fubini’s theorem is not an equivalence.

Problem 2.3.11 Sometimes, Fubini’s Theorem can be used as a tool to show that a one variable
integral converges to a certain value, by transforming the simple integral into a double one and,
in a justified way, exchange order of integration. With this idea in mind and using that

1

x
=

∫ ∞
0

e−txdt,

show that

lim
R→∞

∫ R

0

sinx

x
dx =

π

2
.

Hint: Consider the function f(x, t) = e−xt sinx defined in the set (0, R)× (0,∞) and prove that∫ R

0
dx

∫ ∞
0
f(x, t) dt=

∫ R

0

sinx

x
dx <∞ but

∫ ∞
0
dt

∫ R

0
f(x, t) dx=

π

2
−
∫ ∞
0

e−Rt(cosR+t sinR)

1 + t2
dt.
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Finally, using dominated convergence, prove that this last integral converges to zero as R→∞.

Solution: Consider the function f(x, t) = e−xt sinx defined in the set (0, R) × (0,∞). The
iterated integrals are∫ R

0
dx

∫ ∞
0

f(x, t) dt =

∫ R

0
sinx

(∫ ∞
0

e−xtdt
)
dx =

∫ R

0
sinx

[
− e−xt

x

]t=∞
t=0

dx =

∫ R

0

sinx

x
dx

and, integrating by parts, and using the monotone convergence theorem:∫ ∞
0

dt

∫ R

0
f(x, t) dx =

∫ ∞
0

1− e−Rt cosR− te−Rt sinR

1 + t2
dt

= lim
N→∞

[
arctan t

]t=N
t=0
−
∫ ∞
0

e−Rt(cosR+t sinR)

1 + t2
dt

=
π

2
−
∫ ∞
0

e−Rt(cosR+t sinR)

1 + t2
dt .

On the other hand,∫ R

0

∫ ∞
0
|f(x, t)| dx dt ≤

∫ R

0
| sinx|

(∫ ∞
0

e−xtdt
)
dx

=

∫ R

0
| sinx|

[
− e−xt

x

]t=∞
t=0

dx =

∫ R

0

| sinx|
x

dx <∞

since | sinx|/x is continuous in [0, R] and so is integrable. By Fubini’s theorem, both iterated
integrals are equal: ∫ R

0

sinx

x
dx =

π

2
−
∫ ∞
0

e−Rt(cosR+t sinR)

1 + t2
dt .

But ∣∣∣e−Rt(cosR+t sinR)

1 + t2

∣∣∣ ≤ e−t(1 + t)

1 + t2
∈ L1(0,∞)

and by the dominated convergence theorem we conclude that

lim
R→∞

∫ R

0

sinx

x
dx =

π

2
− lim
R→∞

∫ ∞
0

e−Rt(cosR+t sinR)

1 + t2
dt

=
π

2
−
∫ ∞
0

(
lim
R→∞

e−Rt(cosR+t sinR)

1 + t2

)
dt =

π

2
− 0 =

π

2
.

Problem 2.3.12

a) Prove that the function f(x, y) = e−y sin 2xy is integrable in A = [0, 1]× [0,∞).

b) Prove that ∫ 1

0
e−y sin 2xy dx =

e−y

y
sin2 y ,

∫ ∞
0

e−y sin 2xy dy =
2x

1 + 4x2
.

c) Using Fubini’s theorem, prove that:∫ ∞
0

e−y
sin2 y

y
dy =

1

4
log 5 .
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Solution: a) Using Fubini’s theorem for positive functions we have that∫ 1

0

∫ ∞
0
|f(x, y)| dx dy ≤

∫ 1

0

∫ ∞
0

e−y dy dx =

∫ 1

0
dx

∫ ∞
0

e−y dy <∞ .

b) First, ∫ 1

0
e−y sin 2xy dx = e−y

[
− cos(2xy)

2y

]x=1

x=0
= e−y

1− cos 2y

2y
=
e−y

y
sin2 y .

Secondly, integrating by parts with u = sin(2xy) =⇒ du = 2x cos(2xy) dy, dv = e−ydy =⇒
v = −e−y, we have∫ ∞
0

e−y sin 2xy dy = lim
N→∞

[−e−y sin(2xy)]y=Ny=0 +

∫ ∞
0

2xe−y cos(2xy) dy = 2x

∫ ∞
0

e−y cos(2xy) dy .

Using parts again: u = cos(2xy) =⇒ du = −2x sin(2xy) dy, dv = e−ydy =⇒ v = −e−y, we
have∫ ∞
0

e−y sin 2xy dy = 2x

∫ ∞
0

e−y cos(2xy) dy = 2x lim
N→∞

(
[−e−y cos(2xy)]y=Ny=0 −

∫ ∞
0

2xe−y sin(2xy) dy
)

= 2x− 4x2
∫ ∞
0

e−y sin 2xy dy

and so ∫ ∞
0

e−y sin 2xy dy =
2x

1 + 4x2
.

c) Using now part b) and Fubini’s theorem, we have:∫ ∞
0

e−y
sin2 y

y
dy =

∫ ∞
0

∫ 1

0
e−y sin 2xy dx dy =

∫ 1

0

∫ ∞
0

e−y sin 2xy dy dx

=

∫ 1

0

2x

1 + 4x2
dx =

[1

4
log(1 + 4x2)

]x=1

x=0
=

1

4
log 5 .

Problem 2.3.13 Let µ be the Lebesgue measure on [0, 1] and ν be the counting measure on
N. Let us define G : [0, 1]× N −→ R by G(x, n) =

(
x
2

)n
.

a) Prove that for 0 < a ≤ 1 we have that G−1((−∞, a)) = ∪n([0, 2a1/n)× {n}).
b) Deduce that G is µ⊗ ν-measurable.

c) Use Fubini’s theorem to prove that

∞∑
n=1

1

(n+ 1)2n
= 2 log 2− 1.

Hint: b) Use Problem 1.1.13

Solution: a) Let 0 < a ≤ 1. Then

(x, n) ∈ G−1((−∞, a)) ⇐⇒ G(x, n) =
(x

2

)n
< a ⇐⇒ x < 2a1/n ⇐⇒ (x, n) ∈ [0, 2a1/n)×{n} .
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b) If 0 < a ≤ 1, then G−1((−∞, a)) = ∪∞n=1

(
[0, 2a1/n) × {n}

)
is µ ⊗ ν-measurable. And, also

if a > 1, then G−1((−∞, a)) = [0, 1] × N is µ ⊗ ν-measurable. Note that G−1((−∞, a)) = ∅ if
a ≤ 0.
c) As G is positive and the spaces are σ-finite, we can apply Tonelli-Fubini’s theorem. The
iterated integrals are:∫∫

[0,1]×N
Gdµ⊗ dν =

∫
N

(∫ 1

0

(x
2

)n
dx
)
dν(n) =

∞∑
n=1

1

2n

[ xn+1

n+ 1

]x=1

x=0
=

∞∑
n=1

1

2n(n+ 1)

and ∫∫
[0,1]×N

Gdµ⊗ dν =

∫ 1

0

(∫
N

(x
2

)n
dν(n)

)
dx =

∫ 1

0

∞∑
n=1

(x
2

)n
dx =

∫ 1

0

x/2

1− x/2
dx

=

∫ 1

0

(
− 1 +

2

2− x

)
dx =

[
− x− 2 log(2− x)

]x=1

x=0
= 2 log 2− 1 .

Hence,
∞∑
n=1

1

(n+ 1)2n
= 2 log 2− 1.

Problem 2.3.14 Let f : [0, 1]× [0, 1] −→ R be the function given by

f(x, y) =

{
1 , if x ∈ [0, 1] ∩Q, y ∈ [0, 1] ,

0 , if x ∈ [0, 1] \Q, y ∈ [0, 1] .

a) Prove that f is measurable with respect to Lebesgue σ-algebra.

b) Prove that

∫∫
[0,1]2

f(x, y) dx dy = 0.

Solution: a) Let us observe that F = χ
(Q∩[0,1])×[0,1]

. Hence, as Q ∩ [0, 1] is Lebesgue measurable,
then f also is (see problem 1.1.17).
b) Since f ≥ 0, by Tonelli-Fubini’s theorem:∫∫

[0,1]2
f(x, y) dxdy = m(Q ∩ [0, 1])m([0, 1]) = 0

since Q ∩ [0, 1] is countable.

Problem 2.3.15 Let f : [0, 1]× [0, 1] −→ R be the function given by

f(x, y) =

{
1 , if xy ∈ Q ,

0 , otherwise.

a) Prove that f is measurable with respect to Lebesgue σ-algebra.

b) Prove that

∫∫
[0,1]2

f(x, y) dxdy = 0.
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Solution: a) Let Q = {rk}∞k=1 and Ek := {(x, y) ∈ [0, 1]× [0, 1] : xy = rk}. Then f = χE , where
E = ∪∞k=1Ek. Then, as g(x, y) = xy is continuous, then Ek = g−1({rk}) is closed and so, Ek
is Lebesgue measurable. Hence, E = ∪∞k=1Ek is also Lebesgue measurable and so, f = χE is
Lebesgue measurable.
b) We have that

m(Ek) =

∫ 1

0

(∫ 1

0
χEk

dy
)
dx =

∫ 1

0
m({y : xy = rk}) dx =

∫ 1

0
m
({rk

x

})
dx =

∫ 1

0
0 dx = 0

and so ∫∫
[0,1]2

f(x, y) dx dy = m(E) =
∞∑
k=1

m(Ek) = 0 .

Problem 2.3.16 Let us consider the measure space ([0, 1] × [0, 1],M,m2), where M is the
σ-algebra of Lebesgue measurable sets and m2 is the two-dimensional Lebesgue measure. Given
E ∈M, let us denote

Ex = {y ∈ [0, 1] : (x, y) ∈ E} , Ey = {x ∈ [0, 1] : (x, y) ∈ E} .

Let m1 denote Lebesgue measure on [0, 1]. Prove that if E ∈M verifies that m1(Ex) ≤ 1/2 for
almost all x ∈ [0, 1], then

m1({y ∈ [0, 1] : m1(E
y) = 1}) ≤ 1

2
.

Hint: Apply Fubini’s theorem to the function f = χE and consider the set A = {y ∈ [0, 1] :
m1(E

y) = 1}.
Solution: Let f = χE and A = {y ∈ [0, 1] : m1(E

y) = 1}. Then

m2(E) =

∫ 1

0

(∫ 1

0
χE dy

)
dx =

∫ 1

0
m1(Ex) dx ≤ 1

2

and, by Tonelli-Fubini’s theorem, also:

m2(E) =

∫ 1

0

(∫ 1

0
χE dx

)
dy =

∫ 1

0
m1(E

y) dy ≥
∫
A
m1(E

y) dy =

∫
A
dy = m1(A) .

Hence, m1(A) ≤ 1/2.

Problem 2.3.17 Let f ∈ L1(0,∞). Given α > 0, let us define gα(x) =
∫ x
0 (x− t)α−1f(t) dt for

x > 0. Check that α
∫ y
0 gα(x)dx = gα+1(y) for y > 0.

Hint: Check that you can apply Tonelli-Fubini’s theorem.

Solution: If f(t) ≥ 0, then Tonelli-Fubini’s theorem gives that the formula holds:

α

∫ y

0
gα(x) dx = α

∫ ∞
0

χ
[0,y]

(x)
(∫ ∞

0
(x− t)α−1χ

[0,x]
(t) f(t) dt

)
dx

= α

∫ ∞
0

χ
[0,y]

(t)
(∫ ∞

0
(x− t)α−1χ

[t,y]
(x) f(t) dx

)
dt

= α

∫ y

0

[(x− t)α

α

]x=y
x=t

f(t) dt =

∫ y

0
(y − t)αf(t) dt = gα+1(y) .

(3)
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For general f ∈ L1(0,∞) we have that (3) holds for |f | ≥ 0 and so,∫ ∞
0

∫ ∞
0
|(x− t)α−1f(t)|χ{(x,t):0≤t≤x≤y} dx dt =

∫ ∞
0

χ
[0,y]

(x)
(∫ ∞

0
(x− t)α−1χ

[0,x]
(t) |f(t)| dt

)
dx

=
1

α

∫ y

0
(y − t)α|f(t)| dt ≤ yα

α

∫ ∞
0
|f(t)| dt <∞ .

Hence, the function (x − t)α−1f(t) ∈ L1({(x, t) : 0 ≤ t ≤ x ≤ y}) for each y > 0 and therefore
we can use Tonelli-Fubini’s theorem for general f in the computations in (3).

Problem 2.3.18 Let f and g be Lebesgue integrable functions on [0, 1], and let F and G be
the integrals

F (x) =

∫ x

0
f(t) dt , G(x) =

∫ x

0
g(t) dt .

Use Fubini’s theorem to prove that∫ 1

0
F (x)g(x) dx = F (1)G(1)−

∫ 1

0
f(x)G(x) dx .

Solution: As a direct consequence of problem 2.3.7 we have that f(t) g(x) ∈ L1([0, 1] × [0, 1])
and applying Fubini’s theorem we get that:∫ 1

0
F (x) g(x) dx =

∫ 1

0
g(x)

(∫ x

0
f(t) dt

)
dx =

∫ 1

0
f(t)

(∫ 1

t
g(x) dx

)
dt

=

∫ 1

0
f(t)

(∫ 1

0
g(x) dx−

∫ t

0
g(x) dx

)
dt

=

∫ 1

0
f(t)

(∫ 1

0
g(x) dx

)
dt−

∫ 1

0
f(t)

(∫ t

0
g(x) dx

)
dt

=
(∫ 1

0
g(x) dx

)(∫ 1

0
f(t) dt

)
−
∫ 1

0
f(t)G(t) dt = F (1)G(1)−

∫ 1

0
f(t)G(t) dt .

Problem 2.3.19∗ Apply Fubini’s theorem to obtain the following recurrence formula for n-
dimensional measure Ωn of the unit ball Bn of Rn:

Ωn =
√
π Ωn−1

Γ
(
n+1
2

)
Γ
(
n
2 + 1

) .
Hint: Ωn =

∫ 1
−1mn−1(Bx1) dx1 where Bx1 = {x̄ ∈ Rn−1 : ‖x̄‖ < (1− x21)1/2}. Relate mn−1(Bx1)

with Ωn−1 and use the Euler’s β-function β(x, y) =
∫ 1
0 t

x−1(1−t)y−1dt and the formula β(x, y) =
Γ(x)Γ(y)/Γ(x+ y), where Γ(x) =

∫∞
0 tx−1e−xdx is the Euler Γ-function.

Problem 2.3.20∗ Given x ∈ Rn \ {0}, let us consider its polar coordinates (r, x′) where r =
‖x‖ ∈ (0,∞), x′ = x/‖x‖ ∈ Sn−1 = {x ∈ Rn : ‖x‖ = 1}. The mapping

ϕ : Rn \ {0} −→ (0,∞)× Sn−1 given by ϕ(x) = (r, x′)

is a bijection. Prove that
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a) If µ is the image measure under ϕ of the Lebesgue measure on Rn \ {0}, then

µ(E × U) = σ(U)

∫
E
rn−1dr , for all borel sets E ⊆ (0,∞), U ⊆ Sn−1 .

b) If f : Rn \ {0} −→ [0,∞] is a positive measurable function, then∫
Rn

f(x) dx =

∫ ∞
0

rn−1dr

∫
Sn−1

f(rx′) dσ(x′)

where σ is the (n− 1)-dimensional Lebesgue measure on Sn−1.

c) Given f(x) = |x1x2 · · ·xn|, use Fubini’s theorem to obtain a recurrence formula relating
In =

∫
Bn
f(x) dx with In−1. Deduce the value of In.

d) Apply parts b) and c) to evaluate Jn =
∫
Sn−1

f(x′) dσ(x′), .

Hints: a) For each fixed Borel set U ⊂ Sn−1, as a consequence of Caratheodory-Hopf’s theorem,
it suffices to prove that both sides of the identity coincide for semi-intervals E = [a, b). b)
Observe that f = f ◦ ϕ ◦ ϕ−1 and use first problem ??, part a) and later Fubini’s theorem.
Solution: c) In = In−1/n and so In = 1/n!. d) In = Jn/(2n) and so Jn = 2/(n− 1)!.


