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2 Integration Theory

2.3. Integration on product spaces

Problem 2.3.1 Prove that f(z) =™ € L'(R) and calculate I = / e da.
R

Hint: 22 > z for x > 1. Relate I? with an integral in R2. Calculate this last integral using polar
coordinates.

Solution: As f is continuous in [0,1] we have that f is bounded in [0,1] and so f € L0, 1].
On the other hand, if # > 1 then 2 < 2% and so e @ < ¢ € LY[1,00) hence, f € L[0,00).
Since f is an even function, it belongs to L'(R). To compute the value of I we apply first
Tonelli-Fubini’s theorem:

I? = (/Re_xde) (/Re_dey> = //RXR e~ @) gy dy,

and now we change to polar coordinates and use the monotone convergence theorem:

27 fe’e) 5 N 5
/ / e dr df = 27r/ re " dr =27 lim re " dr
0 N—>000
— 27 i N im (1 eV =7
S e I

Problem 2.3.2 Let A =0,1] x [0, 1].

a) Prove that the function f(z,y) = (Liryy)'d is not integrable in A.

b) Find out if the function f(z,y) = \/%Ty is integrable in A and, in that case, calculate the
integral [/ f(z,y)dzdy.
c¢) Calculate [[, z[1 + x4 y] drdy where [t] denotes the integer part of ¢, discussing before
the 1ntegrab1hty of the function.

Hint: a) Use the change of variables x = y 4+t and use Fubini’s theorem.
Solutions: a) Using Tonelli-Fubini’s theorem and then using the change of variables z = y + ¢
we obtain:

[ amsara= [ (] Sa= [ (], gis @)
1 o 1—
:/0 (/_y (t+2ty)3 dH/o y(t+t2y)3 dt) dy.

But, decomposing into simple fractions:

t (t+2y) — 2y / 1 2y 1 y
i = [T gy - at=——1 ‘e,
/ (t 4 2y)3 / (t +2y)3 ((t +2y)2  (t+ 2y)3) t+2y  (t+2y)? ¢

and so, f is not integrable in A since fol %dy = 00 (see problem 2.1.8, part b3)):

dvdy= [ = ) 1 17
Tdy = — +[— + } )
// x+y v /0 ( t+2y  (t+2y)2li=—y t+2y  (t+2y)*le=0 Y
1
1 1 1 1 1 1 y 1
= T Ml S + —f)dy
/0 (231 y 4y oy 2y l4+y (1+y? 4y

1
3 1 Y
/0 <4y 1ty (1+y)2> y=oo
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b) Using again Tonelli-Fubini’s theorem:

[ mwir= [ (] ga)io= [ Rvalzian

=2 lfdy—2[\f] =2-2=4<00,

and so f is integrable in A.

¢) f(z,y) = z[1 4+ x + y] is bounded and almost everywhere continuous and A is bounded, so f
is Lebesgue-integrable; Now, given k € Z, [1 + x +y] =k if and only if £ <z +y < k+ 1, but
if (z,y) € A then 0 < x + y < 2. Hence, using Tonelli-Fubini’s theorem:

//x[l—l—x—l—y]dwdy—//(m Dea xd:z:dy—i—// 4 2wddy
A 0%t Ty<1

1<x+y<2

:/01(/01 x:cdy)da:+/01(/1;2xdy)dx

:/Olzc(l—a;)da:+/012a:(1—(1—w))dx

_[:1: x3r=1+[2x3r=1_1 1+2_5
L2 3 la=0 3ls=0 2 3 3 6

Problem 2.3.3 Using Tonelli-Fubini’s theorem to justify all steps, evaluate the integral

1,1
/ / 232 cos 2 dy dy .
0 y 2x

Hint: Prove first that g(z,y) = 273/2 cos 52 >0o0n A= {(z,y): 0 <y <z <1}. Then apply
Tonelli-Fubini’s theorem.

Solution: Let g(z,y) = 2~ 3/>cos L. If (x,y) € A, then 3¥ € [0, %] and so g(z,y) > 0. Hence,
we can apply Tonelli-Fubini’s theorem:

1 T
/ / cos ikl dx dy = / </ 232 cos Y dy) dx
0 0 2z
! —3/2( * my ! ~3/2 26 . myjy=e
= T cos — dy) dx = T [— sin —} dx
0 0 2x 0 ™ 2x y=0

1 1 212 0=
:/ :c_3/22$d33:2/ e V2 dy = 2[ / } ' é
0 s m™Jo 1/2 =0 ™

Problem 2.3.4 Let us consider the measure space (N, P(N), 1), with p the counting measure.

a) Prove that p ® p is the counting measure on (N x N, P(N x N)).
b) Let us define the function
1 if m=n,

flm,n) =< —1 if m=n+1,
0  otherwise.

Check that [( [y f(m,n)du(m))du(n), and [ ( [y f(m,n)dv(n)) du(m) exist and are dis-
tinct and that [y, |f(m,n)|d(p ® p)(m,n) = co. What is the relevance of this result?
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¢) Do the same for the function

1+27™  ifm=mn,
gm,n)=¢ —1—-2"" ifm=n+1,
0 otherwise.

Solution: a) It is clear that P(N) ® P(N) = P(N x N) and that

(@ p){(m,n)}) = (p@ p){m} x{n}) = p({m}) p({n}) =1-1=1.

Hence, u ® p is the counting measure in N x N.
b) Now

oo m=n+1

J[ indwen =33 1= — félwow.

n=1 m=n

Also, for fixed n,
/fmndu :men f(n,n)+ f(n+1,n)=1+4(-1)=0,

and, for fixed m,

f(1,1), ifm=1, [1, ifm=1,
/fmnd“ men {f(m,m—1)+f(m,m), ifm22,_{0, ifm>2.

[ ([ smem) dum) dutn) = 3= 3 smm) = 300
n=1m=1 n=1
and
/ /fmnd,u )d,u Zmen—1+0—l— +0+---=1.
m=1n=1

Therefore, the iterated integrals do not coincide and so Fubini’s theorem can not be applied.
The reason is that f ¢ L'(u ® p). This shows that the condition of integrability in Fubini’s
theorem is necessary.

c) For fixed n we have:
o0
/fmnd,u :men f(n,n) + f(n+1,n)=1+4+2"—-1—2"""1 =91

and, for fixed m,

[ st duto) f}f(m,m:{f“’”’ b

f(mam_1)+f(m>m)a 1fm22,

14271, ifm=1, [3/2, ifm=1,
—1—2m41427m ifm>2. |0, ifm>2.



Problems of Integration & Measure: Integration on product spaces 4

Hence,

o0

/N</Nf(m,n)dﬂ(m)>du(n):iif(mjn):ifnﬂ:1 12171:;_1:;
d

n=1m=1 n=1 n=
an

/ /fmnd,u,( )du Zmen*f—i-O—&- +O+---:;.

m=1n=1
Hence, the iterated integrals do not coincide also in this case. Therefore, Fubini’s theorem can
not be applied and since (N, P(N), i) is o-finite the only possibility is that f ¢ L'(u® u) (as it
can be easily verified).

Problem 2.3.5 Let (X,.A) be a measurable space an let f : X — [0,00] be a positive
A-measurable function. Let

Ay ={(z,y) e X xR: 0<y < f(a)}.
a) Prove that Ay € A® B(R).

b) Given a o-finite measure p in (X, A) prove that [y f du coincides with the product measure
m = ® m of the set Ay, where m denotes Lebesgue measure in R.

Hints: a) Prove it first for simple functions s(x) in X and later for positive functions in X. b)
Use the monotone convergence theorem.

X\ E)x{0}) €

Solution: a) If f = x, is a characteristic function then Ay = (E x [0, 1] ) U (
c; > 0) with E; € A

A ® B(R). Similarly, if s = ijl CiXg, is a positive simple functlo (¢
pairwise disjoint sets, we have that

m

As=J (B x [0,¢]) U (X \ Ej) x {0}) € A® B(R).

j=1
Finally, if f > 0 then, let {s,}72; be an increasing sequence of simple functions such that
0<s1<sy---<s5,<--- /Ff, as n — 00.

Then

oo
Ar={(z,y) e XxR: 0<y < f(x)}= U{ z,y) € XxR: 0<y<sj(z )}:UAS].EAQ@B(R).
j=1 j=1
b) If s = ZT:1 CjXp, 18 a positive simple function (¢; > 0) with E; € A pairwise disjoint sets,
we have that

m
(peom)(4) = S (pem) (B [0, e5]) + (um) (X \ By) x {0}) = Zc]u 0= [ sdu. (1)
7j=1
since m({0}) = 0.
If f>0,let {sp}o2; be an increasing sequence of positive measurable functions with s,,  f as
n — 0o. Then, since Ay is equal to the increasing union of the sets Ay, and using (1) and the
monotone convergence theorem:

(p@m)(Ay) = nli_)r&(u@m)(Asn) = lim Spdp = /deu.

n—oo X
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Problem 2.3.6 Let X =Y = [0,1], A1, Az = B([0,1]), 1 the Lebesgue measure on A;, v
the counting measure on As. In the measure space (X x Y, A; ® Ag, u ® v) we consider the set
V ={(z,y) : x = y}. Check that V € A; ® As. However

/dl// Xy dp =0, /du/xvdyzl.
Y X X Y

What hypothesis of Fubini’s theorem does not hold?

Hint: IV, = (I x 1) U--- U (I, x I,) U {(1,1)} being I; = [=1, 1) j = 1,2,...,n, then
V=NV, o
Solution: For each n € Nlet V, = (I) x 1) U--- U (I, x I,,) U {(1,1)} where I; = [%,%)

j=1,2,...,n. Then it is clear V C V,, but it is also easy to check that V' = N>, V,,. Hence, as
V., is a union of products of semiopen intervals and a point we have that V,, € A1 ® Ay for all
n € N and therefore also V € A; ® A,.

On the other hand,

/YdV/XxvdMZ/Y(/ Xy (,9) dw dv(y /m{y} ) dv(y /Y()dl/(y)ZO,
/Xd,u/yxvduz/ol(/YXV(:U,y)dZ/(y))dx:/olu({:n})dﬂc:/Olld:r:1.

Therefore the iterated integrals do not coincide and so we can not apply Fubini’s theorem. Since
X, > 0 the only possible reason is that (Y, B([0,1]),r) is not o-finite and this example shows
that the o-finiteness hypothesis is necessary in Tonelli-Fubini’s theorem.

and

Problem 2.3.7 Let (X, Ay, ux) be o-finite measure spaces, k = 1,2...,n. Let fx : X —
[0, 00] be positive Ag-measurable functions, k = 1,2...,n.

a) Prove that the product function h = fifa... fr: X1 x -+ x X, — [0, 00| given by

h(z1,...,20) = fi(z1)fa(z2) - - fu(2n)
is A1 ® - - - ® A,-measurable and that

/X1><><Xn(flf2fn) dul@@dun:g/); fidu; . (2)

b) Use this formula to compute the integral / e l7l* gz

n

c) Calculate again this integral using the formula for radial functions in Problem 2.2.26 and
from this obtain the value of Q, = m(B,), the n-dimensional Lebesgue measure of the
unit ball B, of R™.

d) Prove that part a) also holds when the functions fi, ..., fx are not positive but fi, € L' (i),
k=1,2...,n

Hints: a) Consider the functions Fj(x1,x2,...,x,) := fi(x;) and use Fubini’s theorem for positive
functions. b) Use a) and problem 2.3.1. ¢) Use Euler’'s Gamma function and that «I'(x) =
I'(x +1). d) Use Fubini’s theorem.
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Solution: a) For k=1,...,n,let F;: X1 x Xo x--- X,, — [0, 00] given by Fj(z1,22,...,Ty) :=
fr(zx). Then, if V C [0, 00] is open, then

F'WV)=X1x - x X1 x [ V) X X1 X - x Xp €A1 @+ @ Ay,

since f, L(V) € Ai because f, is Aj-measurable by hypothesis. Finally, as h = F{Fy--- F),
we obtain that h is A; ® - - - ® A,-measurable because h is a product of measurable functions.
Finally, (2) follows from Tonelli-Fubini’s theorem.

b) Using (2) and problem 2.3.1 we have

_ 2 a2 2 .2
/ eIzl d:c:/ e Fle ™2 ... dxy ... dx,
n Rx--xR

n

= I [etane= ([ e an)" = vy =2

k=1

c¢) Using the formula in problem 2.2.26 we have

—|lz||? > —r2 n—1 1 > n/2—1_—u
e dr =n, e "r dr:§nQn U e “du,
n 0 0

where we have done the change of variable u = r2. Using now the Euler Gamma-function

I'(z) = [7°u® te " du, we obtain that:

1
/n ezl g — 5115%1“(%) .

From this and the formula obtained in b) we deduce that

ogn/2 /2
nl(3) T(5+1)

1
§nQnF<g>:ﬂ”/2 = O, =

where we have used the well-known formula I'(z + 1) = a'(z).
d) As |h| = |f1]---|fa] and since fr € L'(ux), k = 1,2...,n., we obtain from a) that h €
L' @+ @ )

/ Pl = [ llal 1l din @@ = T] [ 1fildisi < 0.
X1x-xXp X1 X x Xy i=17Xi

Hence, we can apply now Fubini’s theorem to obtain (2) for general functions fi,..., fy.

Problem 2.3.8 Let us consider the Lebesgue measure on R2. Let A = [a,b] X [c,d] and let f
be continuous on A. Prove that

Afdm:/abd:c/cdf(ﬂ:,y)dyz/Cddy/abf(g;?y)dx‘

Solution: Since f is continuous in the compact set A, we have that f is bounded in A and so,
as A has finite Lebesgue measure, f is Lebesgue-integrable in A. The formula is now a direct
consequence of Fubini’s theorem.
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Problem 2.3.9 Let L
_TTTY 0 0)
T,y) = (z2+y2)2 » (z,y) # (0,0),
f(@,y) { ( 0o

/Oldv’ﬂ/olf(x,y)dyzz, /Oldy/olf(;p,y)dx:_

What hypothesis of Fubini’s theorem does not hold?

Check that

Solution: The iterated integrals are

1,1 _ 1
Yy y=1 dx ™
d )d d d = dr = =
/ x/fmy V= /m/ dy $2+y Y /o/o [$2+y2}y:0x /01+a;2 4
L dx T
/dm/fwy [oof g e=[ [ el = [ 15 =

Hence, Fubini’s theorem can not be applied. The reason is, a fortiori, that f ¢ L'([0, 1] x [0, 1]).

Problem 2.3.10 Let us define the function f:[—1,1] x [-1,1] — R given by

_ %7 (x7y)7é(0a0)7
f“’y)_{éf“ (,9) = (0,0).

/_11 d /_11 flz,y)dy = /_11 dy /_11 F(z,y) dz

but however f is not integrable in [—1, 1] x [—1,1]. Why is relevant this exercise?

Check that

Solution: Since f(x,y) is odd in both variables and the domain is symmetric with respect to
both variables we have that both iterated integrals vanish. However, f ¢ L'([-1,1] x [~1,1]):

1 1 1 2T 1.2 ot 0 6 2T 1 d
/ / ]f(a:,y)]dacdyz/ / |Tsm4coslrdrd€:87r</ sin@cos&d&)(/ —T):oo,
—1J-1 0 Jo r 0 o T

This fact shows that Fubini’s theorem is not an equivalence.

Problem 2.3.11 Sometimes, Fubini’s Theorem can be used as a tool to show that a one variable
integral converges to a certain value, by transforming the simple integral into a double one and,
in a justified way, exchange order of integration. With this idea in mind and using that

1 o0
— = / et
z 0

R—o0 0 X 2

Hint: Consider the function f(x,t) = e *!sinz defined in the set (0, R) x (0, c0) and prove that

R 00 R 0o —Rt )
t

/d:z: f(z,t) dt:/ sma:d < oo but / dt f z,t) dzx _T / e "(cos R+tsin R) dt.
o Jo 0 2 Jo 1+¢2

show that
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Finally, using dominated convergence, prove that this last integral converges to zero as R — oo.

Solution: Consider the function f(z,t) = e *'sinz defined in the set (0, R) x (0,00). The
iterated integrals are

R [e%S) R o0 R oty I
/ dw/ f(z,t) dt_/ sin:r(/ e—xtdt) dm—/ sin [_ € ] oodx_/ Slnxdx
0 0 0 0 0 z lico -

and, integrating by parts, and using the monotone convergence theorem:

00 R o] —Rt —Rt o
1— -
/ t/ (2, 1) / e cos R 2te sin R ’
0 0 0 1+t

t=N /°° e R (cos R+tsin R)
t=0 0 1+ 2

dt

= lim [arctant}
N—oo

7 > e~Ft(cos R+tsin R)
2" 1+

dt.

On the other hand,

R poo R oo
/ / |f(x,t)|dxdt < / | sin x| (/ e_mtdt> dz
o Jo 0 0

R —Tt - t=00 R :
:/ ’sinx\[—e } dx:/ Mda:<oo
0 x t=0 0 x

since |sinx|/z is continuous in [0, R] and so is integrable. By Fubini’s theorem, both iterated

integrals are equal:
/R sin x dp — g B /°° e~ ft(cos R+tsin R) .
0 0

14 ¢2
But

‘e‘Rt(cos R+tsin R) ‘ < e t(1+1)
1+ 2

and by the dominated convergence theorem we conclude that

i R sing dr— T lm > ¢~f(cos R+tsin R) Ut
R—o0 0 X 2 R—o0 0 1 + t2
e —Rt :
:7T_/ ( lim € (COSR+tSIHR))dt:E_O:E.
2 Jy \rox 1+ 12 2 2

Problem 2.3.12

a) Prove that the function f(x,y) = e™Ysin2zy is integrable in A = [0, 1] x [0, c0).
b) Prove that

1 -y o0 9
e x

“Ygin 22y dr = — sin?y, /—y‘2 dy = —— .
/Oe sin 2zy dx y sin“y ; e 7sin2xy dy T 422

c¢) Using Fubini’s theorem, prove that:

o0 i 02
1
/ ey 2 ydy:flogS.
0 Y 4
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Solution: a) Using Fubini’s theorem for positive functions we have that

// :Uy\da;dy<// eydydm—/dx/ e Ydy < oo.

b) First,

22y)12=1 1— cos?2 -y
cos( :Uy)} _ v cos2y eV sin?y .
2y =

1
/ e Ysin2xydr =e Y [ —
0 0 2y

Secondly, integrating by parts with v = sin(2zy) = du = 2z cos(2zy) dy, dv = e Vdy —
v = —e Y, we have

o

[ee] oo
/ e Ysin2zydy = lim [—eY sin(2xy)]yzév+/ 2ze Y cos(2zy) dy = Zm/ e Y cos(2zy) dy .

Using parts again: u = cos(2zy) = du = —2zxsin(2zy)dy, dv = e ¥dy — v = —e Y, we
have

o0 oo o0
/ e Ysin2xydy = Zx/ e Y cos(2zy) dy = 2x lim ([ e~ cos(2xy)]y_ - / 2ze Y sin(2xy) dy)
oo
= 2z — 42 / e Ysin 2zy dy
0

and so
2z

(o]
/O e ySlDQxydy:m.

c¢) Using now part b) and Fubini’s theorem, we have:

/ y SO ydy—/ / e ysm2xydxdy—/ / e Ysin 2zy dy dx
0

:/0 id [ log(1 + 4x )] Zo — log5.

1+ 422

Problem 2.3.13 Let u be the Lebesgue measure on [0, 1] and v be the counting measure on

N. Let us define G : [0,1] x N — R by G(z,n) = (%)".

a) Prove that for 0 < a < 1 we have that G=1((—00,a)) = Uy,([0,2a*/™) x {n}).
b) Deduce that G is u ® v-measurable.
c¢) Use Fubini’s theorem to prove that

o0

—21 2 —1.
nl

Hint: b) Use Problem 1.1.13
Solution: a) Let 0 < a < 1. Then

(z,n) € G ((~00,a)) <= G(z,n) = <g>n <a = x<2d" <= (z,n)€[0,2a"/")x{n}.
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b) If 0 < @ < 1, then G ((—00,a)) = U2, ([0, 2a'/™) x x {n}) is p ® v-measurable. And, also
if a > 1, then G7!((—00,a)) = [0,1] x N is ;1 ® v-measurable. Note that G~!((—c0,a)) = @ if
a <0.

c) As G is positive and the spaces are o-finite, we can apply Tonelli-Fubini’s theorem. The
iterated integrals are:

J[[, eaew=[ ([ () a)wm=3 3 [Z5]0 -3 mty

n=1 n=1
and
! x Voz/2
//[0,1]xNGd'u®dV:/o </N<2> dv(n )dm—/ Zl( ) _/0 1—x/2d
1
:/0 (—14—%)6[1’:[—x—2log(2—x)]zzé:210g2—1.
Hence,
- 1
5, = 2log2 — 1.
;(n—Fl)Q

Problem 2.3.14 Let f:[0,1] x [0,1] — R be the function given by

C[1, itzef0,1nQ, yeo,1],
I ’y)‘{o, it e 0,110, ye0.1).

a) Prove that f is measurable with respect to Lebesgue o-algebra.

b) Prove that / f(z,y)dxdy = 0.
[0,1]2

Solution: a) Let us observe that F' = X (0nio.1)x[0.1] Hence, as Q N [0, 1] is Lebesgue measurable,

then f also is (see problem 1.1.17).
b) Since f > 0, by Tonelli-Fubini’s theorem:

/ f(z,y)dedy = m(Q N [0,1]) m([0,1]) =0
[0,1]2

since @ N [0, 1] is countable.

Problem 2.3.15 Let f:[0,1] x [0,1] — R be the function given by

if

0, otherwise.

a) Prove that f is measurable with respect to Lebesgue o-algebra.

b) Prove that / f(z,y) dxdy = 0.
[0,1]2
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Solution: a) Let Q = {r}72, and Ej, := {(x,y) € [0,1] x [0,1] : zy = r;}. Then f = x,, where
E = UX ,Ey. Then, as g(z,y) = xy is continuous, then E; = ¢~ 1({ry}) is closed and so, Ej
is Lebesgue measurable. Hence, E' = U2, E}, is also Lebesgue measurable and so, f = x, is

Lebesgue measurable.
b) We have that

m(Ek):/01(/leEkdy)dx:/Olm({y;xy:rk})dx:/Olm({f})dx:/oloczm:o

and so

[t dedy=m(E) =3 m(z) =o.
(0,12 k=1

Problem 2.3.16 Let us consider the measure space ([0, 1] x [0,1], M, m3), where M is the
o-algebra of Lebesgue measurable sets and my is the two-dimensional Lebesgue measure. Given
E € M, let us denote

Ey={yel0,1]: (z,y) e E}, EY'={xel0,1]: (z,y) € E}.
Let m; denote Lebesgue measure on [0, 1]. Prove that if E € M verifies that m,(E,) < 1/2 for

almost all z € [0, 1], then

mi({y € [0,1] : my(EY) = 1}) < %

Hint: Apply Fubini’s theorem to the function f = x, and consider the set A = {y € [0,1] :
my(EY) =1}.
Solution: Let f = x, and A= {y € [0,1] : m1(EY) = 1}. Then

maB)= [ ([ o) tor= [Cmi< |

and, by Tonelli-Fubini’s theorem, also:

m2(E):/01(/lede> dy:/olml(Ey)dyz/Aml(Ey)dy:/Ady:ml(A)-

Hence, mi(A) < 1/2.

Problem 2.3.17 Let f € L*(0,00). Given o > 0, let us define go(x) = [3 (z — )1 f(¢) dt for
@ > 0. Check that « [ ga(z)dz = gat1(y) for y > 0.

Hint: Check that you can apply Tonelli-Fubini’s theorem.
Solution: If f(t) > 0, then Tonelli-Fubini’s theorem gives that the formula holds:

o [Maaterdz =a [“x @ [ @07, 0 0 d) do
o [T [ @00 ro) ) 3
—o [T 0= M- 00w = gonty).
0 0

r=t
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For general f € L'(0,00) we have that (3) holds for |f| > 0 and so,

/ / ) O X o0cicacyy 4T dE = /OOOX[oy]( )(/oo(x—t) 0 (O 1f(2 )|dt) dx
— - [w-orsc rdt</ (O] dt < oo.

Hence, the function (z —)*~1f(t) € L*({(z,t) : 0 <t < x < y}) for each y > 0 and therefore
we can use Tonelli-Fubini’s theorem for general f in the computations in (3).

Problem 2.3.18 Let f and g be Lebesgue integrable functions on [0,1], and let F' and G be

the integrals N N
~ [ war, 6@ = [ g,
0 0

Use Fubini’s theorem to prove that

/ F)g(x) dsz(l)G(l)—/ F(@)G(z) da
0 0

Solution: As a direct consequence of problem 2.3.7 we have that f(¢) g(z) € L'([0,1] x [0,1])
and applying Fubini’s theorem we get that:

/01 F(z) g(z) da::/olg(x) (/Oxf(t) dt) dx:/ol £(1) (/tlg(x) dr) di
:/Olf(t)</01g(x)dac—/0tg(x)dx)dt
= [ ([ swrar)ai~ [ ([ ot aw)ar

= (/Olg(x)dx)(/ol f(t)dt) —/01 f(t)G(t)dt:F(l)G(l)—/Olf(t)(; t)dt

Problem 2.3.19* Apply Fubini’s theorem to obtain the following recurrence formula for n-
dimensional measure €2,, of the unit ball B,, of R™:

()
A ()

Hint: Q,, = f_ll Mn_1(Bz,) dry where By, = {7 € R" 1 ||z|| < (1 —2?)Y/2}. Relate m,_1(Ba,)

with €2,,_1 and use the Euler’s B function S(z,y) fo t*=1(1—t)¥~1dt and the formula 3(x,y) =
L(z)L(y)/T(z 4 y), where T'(z) = [;°t* e *dx is the Euler I-function.

Problem 2.3.20* Given z € R™\ {0}, let us consider its polar coordinates (r,z’) where r =
|z]| € (0,00), 2’ = z/||z|| € Sp—1 = {z € R": ||z|| = 1}. The mapping

¢ :R"\ {0} — (0,00) x Sp—1 given by ¢(z) = (r,2")

is a bijection. Prove that
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a) If p is the image measure under ¢ of the Lebesgue measure on R™ \ {0}, then

w(ExU) = J(U)/ " tdr, for all borel sets £ C (0,00), U C Sp—1.
E

b) If f:R™\ {0} — [0, 00] is a positive measurable function, then
o
f(x) dx:/ T”_ldr/ f(ra’)do(x)
Rn 0 Sn—1

where o is the (n — 1)-dimensional Lebesgue measure on S,,_1.

c) Given f(x) = |z1xe- - x|, use Fubini’s theorem to obtain a recurrence formula relating
I, = an f(z) dz with I,_1. Deduce the value of I,,.

d) Apply parts b) and c) to evaluate J,, = [¢  f(2') do(2'), .

Hints: a) For each fixed Borel set U C S,,_1, as a consequence of Caratheodory-Hopf’s theorem,
it suffices to prove that both sides of the identity coincide for semi-intervals £ = [a,b). b)
Observe that f = f oo ¢~! and use first problem ??, part a) and later Fubini’s theorem.
Solution: ¢) I, = I,_1/n and so I,, = 1/n!. d) I, = J,/(2n) and so J,, =2/(n — 1)\



